These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 7050171)

  • 1. Characterization of isolated mouse cerebellar cell populations in vitro.
    Schnitzer J; Schachner M
    J Neuroimmunol; 1981 Dec; 1(4):457-70. PubMed ID: 7050171
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Expression of Thy-1, H-2, and NS-4 cell surface antigens and tetanus toxin receptors in early postnatal and adult mouse cerebellum.
    Schnitzer J; Schachner M
    J Neuroimmunol; 1981 Dec; 1(4):429-56. PubMed ID: 6125529
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Developmental expression of cell type-specific markers in mouse cerebellar cells in vitro.
    Schnitzer J; Schachner M
    J Neuroimmunol; 1981 Dec; 1(4):471-87. PubMed ID: 6125530
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Immunoselection of oligodendrocytes by magnetic beads. II. In vitro maintenance of immunoselected oligodendrocytes.
    Meier D; Schachner M
    J Neurosci Res; 1982; 7(2):135-45. PubMed ID: 7047757
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neuronal influence on antigenic marker profile, cell shape and proliferation of cultured astrocytes obtained by microdissection of distinct layers from the early postnatal mouse cerebellum.
    Nagata I; Keilhauer G; Schachner M
    Brain Res; 1986 Jan; 389(1-2):217-32. PubMed ID: 3484997
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Specificity of monoclonal antibody N1 for cell surfaces of mouse central nervous system neurons.
    Schnitzer J; Kim SU; Schachner M
    Brain Res; 1984 Jul; 317(1):21-32. PubMed ID: 6380650
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Isolation of glial cell-enriched and -depleted populations from mouse cerebellum by density gradient centrifugation and electronic cell sorting.
    Campbell GL; Schanchner M; Sharrow SO
    Brain Res; 1977 May; 127(1):69-86. PubMed ID: 193614
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Astroglial cells provide a template for the positioning of developing cerebellar neurons in vitro.
    Hatten ME; Liem RK
    J Cell Biol; 1981 Sep; 90(3):622-30. PubMed ID: 6793601
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of Thy-1 antigen on cerebellar neurons in culture.
    Fields KL; Currie DN; Dutton GR
    J Neurosci; 1982 Jun; 2(6):663-73. PubMed ID: 7045293
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Early postnatal GFAP-expressing cells produce multilineage progeny in cerebrum and astrocytes in cerebellum of adult mice.
    Guo Z; Wang X; Xiao J; Wang Y; Lu H; Teng J; Wang W
    Brain Res; 2013 Sep; 1532():14-20. PubMed ID: 23939222
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Maintenance of immunocytologically identified Purkinje cells from mouse cerebellum in monolayer culture.
    Weber A; Schachner M
    Brain Res; 1984 Oct; 311(1):119-30. PubMed ID: 6386104
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cell type-specificity of epidermal growth factor (EGF) binding in primary cultures of early postnatal mouse cerebellum.
    Leutz A; Schachner M
    Neurosci Lett; 1982 May; 30(2):179-82. PubMed ID: 6287367
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Immunocytochemical demonstration of vimentin in astrocytes and ependymal cells of developing and adult mouse nervous system.
    Schnitzer J; Franke WW; Schachner M
    J Cell Biol; 1981 Aug; 90(2):435-47. PubMed ID: 7026573
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Immunocytochemical localization of cell type-specific markers in reaggregating cell cultures of mouse cerebellum.
    Lindner J; Schachner M
    Cell Tissue Res; 1982; 227(3):677-90. PubMed ID: 6758948
    [No Abstract]   [Full Text] [Related]  

  • 15. Immunocytological and biochemical characterization of a new neuronal cell surface component (L1 antigen) which is involved in cell adhesion.
    Rathjen FG; Schachner M
    EMBO J; 1984 Jan; 3(1):1-10. PubMed ID: 6368220
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two forms of cerebellar glial cells interact differently with neurons in vitro.
    Hatten ME; Liem RK; Mason CA
    J Cell Biol; 1984 Jan; 98(1):193-204. PubMed ID: 6707084
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bipotential precursors of putative fibrous astrocytes and oligodendrocytes in rat cerebellar cultures express distinct surface features and "neuron-like" gamma-aminobutyric acid transport.
    Levi G; Gallo V; Ciotti MT
    Proc Natl Acad Sci U S A; 1986 Mar; 83(5):1504-8. PubMed ID: 3513179
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro growth of glial cell-enriched and depleted populations from mouse cerebellum.
    Campbell GL; Williams MP
    Brain Res; 1978 Nov; 156(2):227-39. PubMed ID: 361171
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Astrocyte and oligodendrocyte distribution in adult rat cerebellum: an immunohistological study.
    Ghandour MS; Vincendon G; Gombos G
    J Neurocytol; 1980 Oct; 9(5):637-46. PubMed ID: 6777466
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monoclonal antibody (M2) to glial and neuronal cell surfaces.
    Lagenaur C; Schachner M
    J Supramol Struct Cell Biochem; 1981; 15(4):335-46. PubMed ID: 6170757
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.