BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 7050870)

  • 1. Differences in liver folate enzyme patterns in premature and full term infants.
    Kalnitsky A; Rosenblatt D; Zlotkin S
    Pediatr Res; 1982 Aug; 16(8):628-31. PubMed ID: 7050870
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Methionine synthesis, aminoimidazole carboxamide excretion and folate levels in pregnant rats.
    N'Diaye F; Hitier Y; Poiter de Courcy G; Goubern M; Bourdel G
    J Nutr; 1980 Mar; 110(3):522-31. PubMed ID: 6965714
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of nitrous oxide-induced inactivation of vitamin B12 on the activity of formyl-methenyl-methylenetetrahydrofolate synthetase, methylene-tetrahydrofolate reductase and formiminotetrahydrofolate transferase.
    Perry J; Deacon R; Lumb M; Chanarin I
    Biochem Biophys Res Commun; 1980 Dec; 97(4):1329-33. PubMed ID: 6971097
    [No Abstract]   [Full Text] [Related]  

  • 4. [Activities of folate-derivative converting enzymes in the brain of patients with amyotrophic lateral sclerosis].
    Yoshino Y; Wakabayashi Y
    Rinsho Shinkeigaku; 1983 Jul; 23(7):563-9. PubMed ID: 6362949
    [No Abstract]   [Full Text] [Related]  

  • 5. Folate metabolism in filariae: enzymes associated with 5,10-methylenetetrahydrofolate.
    Jaffe JJ; Chrin LR
    J Parasitol; 1980 Feb; 66(1):53-8. PubMed ID: 6988563
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interaction of tetrahydropteroylpolyglutamates with two folate-dependent multifunctional enzymes.
    MacKenzie RE; Baugh CM
    Adv Exp Med Biol; 1983; 163():19-34. PubMed ID: 6412522
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation into the substrate capacity of the acetaldehyde-tetrahydrofolate condensation product.
    LaBaume LB; Guynn RW
    Prog Clin Biol Res; 1985; 183():189-200. PubMed ID: 3901018
    [No Abstract]   [Full Text] [Related]  

  • 8. Multifactorial resistance to 5,10-dideazatetrahydrofolic acid in cell lines derived from human lymphoblastic leukemia CCRF-CEM.
    Pizzorno G; Moroson BA; Cashmore AR; Russello O; Mayer JR; Galivan J; Bunni MA; Priest DG; Beardsley GP
    Cancer Res; 1995 Feb; 55(3):566-73. PubMed ID: 7834626
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Time-course studies on the effects of oestradiol administration on the activity of some folate-metabolizing enzymes in chicken liver.
    Burns RA; Jackson N
    Comp Biochem Physiol B; 1982; 71(3):351-5. PubMed ID: 7067401
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetic basis of neural tube defects. II. Genes correlated with folate and methionine metabolism.
    Gos M; Szpecht-Potocka A
    J Appl Genet; 2002; 43(4):511-24. PubMed ID: 12441636
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Altered folate metabolism and disposition in mothers affected by a spina bifida pregnancy: influence of 677c --> t methylenetetrahydrofolate reductase and 2756a --> g methionine synthase genotypes.
    Lucock M; Daskalakis I; Briggs D; Yates Z; Levene M
    Mol Genet Metab; 2000 May; 70(1):27-44. PubMed ID: 10833329
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assays of methylenetetrahydrofolate reductase and methionine synthase activities by monitoring 5-methyltetrahydrofolate and tetrahydrofolate using high-performance liquid chromatography with fluorescence detection.
    Huang L; Zhang J; Hayakawa T; Tsuge H
    Anal Biochem; 2001 Dec; 299(2):253-9. PubMed ID: 11730351
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The folate cycle and disease in humans.
    Fowler B
    Kidney Int Suppl; 2001 Feb; 78():S221-9. PubMed ID: 11169015
    [TBL] [Abstract][Full Text] [Related]  

  • 14. LY231514, a pyrrolo[2,3-d]pyrimidine-based antifolate that inhibits multiple folate-requiring enzymes.
    Shih C; Chen VJ; Gossett LS; Gates SB; MacKellar WC; Habeck LL; Shackelford KA; Mendelsohn LG; Soose DJ; Patel VF; Andis SL; Bewley JR; Rayl EA; Moroson BA; Beardsley GP; Kohler W; Ratnam M; Schultz RM
    Cancer Res; 1997 Mar; 57(6):1116-23. PubMed ID: 9067281
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Molecular genetics of the remethylation of homocysteine].
    Chango A; Parrot-Roulaud F; Nicolas J
    Ann Biol Clin (Paris); 1999; 57(1):37-42. PubMed ID: 9920965
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Atherogenic diet alters folate enzymes in mice: implications of folate deficient homocysteinemia.
    Kulkarni MV; Kesavan V; Viswanathan G
    Indian J Biochem Biophys; 1998 Oct; 35(5):303-7. PubMed ID: 10410464
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polymorphic variants of genes encoding MTHFR, MTR, and MTHFD1 and the risk of depression in postmenopausal women in Poland.
    Słopien R; Jasniewicz K; Meczekalski B; Warenik-Szymankiewicz A; Lianeri M; Jagodziński PP
    Maturitas; 2008 Nov; 61(3):252-5. PubMed ID: 18801628
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hepatic transmethylation reactions in micropigs with alcoholic liver disease.
    Villanueva JA; Halsted CH
    Hepatology; 2004 May; 39(5):1303-10. PubMed ID: 15122759
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Folate enzymes in Ehrlich ascites carcinoma-bearing mice.
    Chmurzyńska W; Manteuffel-Cymborowska M; Sikora E; Grzelakowska-Sztabert B
    Cancer Lett; 1984 Dec; 25(2):217-24. PubMed ID: 6391650
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Severe methylenetetrahydrofolate reductase deficiency, methionine synthase, and nitrous oxide--a cautionary tale.
    Erbe RW; Salis RJ
    N Engl J Med; 2003 Jul; 349(1):5-6. PubMed ID: 12840086
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.