BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 7050957)

  • 1. Detection and isolation of fetal cells from maternal blood using the flourescence-activated cell sorter (FACS).
    Iverson GM; Bianchi DW; Cann HM; Herzenberg LA
    Prenat Diagn; 1981 Jan; 1(1):61-73. PubMed ID: 7050957
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fetal cells in the blood of pregnant women: detection and enrichment by fluorescence-activated cell sorting.
    Herzenberg LA; Bianchi DW; Schröder J; Cann HM; Iverson GM
    Proc Natl Acad Sci U S A; 1979 Mar; 76(3):1453-5. PubMed ID: 286330
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prenatal diagnosis with use of fetal cells isolated from maternal blood: five-color fluorescent in situ hybridization analysis on flow-sorted cells for chromosomes X, Y, 13, 18, and 21.
    Bischoff FZ; Lewis DE; Nguyen DD; Murrell S; Schober W; Scott J; Simpson JL; Elias S
    Am J Obstet Gynecol; 1998 Jul; 179(1):203-9. PubMed ID: 9704788
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Massive invasion of fetal lymphocytes into the mother's blood at induced abortion.
    Zilliacus R; de la Chapelle A; Schröder J; Tiilikainen A
    Scand J Immunol; 1975 Sep; 4(5-6):601-5. PubMed ID: 1179168
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enrichment of fetal cells from maternal blood by magnetic activated cell sorting (MACS) with fetal cell specific antibodies: one-step versus two-step MACS.
    Zhao XX; Ozaki Y; Suzumori N; Sato T; Suzumori K
    Congenit Anom (Kyoto); 2002 Jun; 42(2):120-4. PubMed ID: 12196708
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improved fetal nucleated erythrocyte sorting purity using intracellular antifetal hemoglobin and Hoechst 33342.
    DeMaria MA; Zheng YL; Zhen D; Weinschenk NM; Vadnais TJ; Bianchi DW
    Cytometry; 1996 Sep; 25(1):37-45. PubMed ID: 8875053
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prenatal diagnosis using fetal cells isolated from maternal peripheral blood: a review.
    Steele CD; Wapner RJ; Smith JB; Haynes MK; Jackson LG
    Clin Obstet Gynecol; 1996 Dec; 39(4):801-13. PubMed ID: 8934032
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Investigation of fetal cells isolated from maternal blood by different methods].
    Zolotukhina TV; Shilova NV; Zamulaeva IA; Saenko AS
    Vestn Ross Akad Med Nauk; 2000; (5):36-40. PubMed ID: 10881661
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fetal gender and aneuploidy detection using fetal cells in maternal blood: analysis of NIFTY I data. National Institute of Child Health and Development Fetal Cell Isolation Study.
    Bianchi DW; Simpson JL; Jackson LG; Elias S; Holzgreve W; Evans MI; Dukes KA; Sullivan LM; Klinger KW; Bischoff FZ; Hahn S; Johnson KL; Lewis D; Wapner RJ; de la Cruz F
    Prenat Diagn; 2002 Jul; 22(7):609-15. PubMed ID: 12124698
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detection of fetal cells with common chromosomal aneuploidies in maternal blood.
    Kuo PL
    J Formos Med Assoc; 1999 Jun; 98(6):433-9. PubMed ID: 10443068
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inability to detect fetal metaphases in flow-sorted lymphocyte cultures based on maternal-fetal HLA differences.
    Tharapel AT; Jaswaney VL; Dockter ME; Wachtel SS; Chandler RW; Simpson JL; Shulman LP; Meyers CM; Elias S
    Fetal Diagn Ther; 1993; 8(2):95-101. PubMed ID: 8338631
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detection of fetal cells with 47,XY,+21 karyotype in maternal peripheral blood.
    Bianchi DW; Mahr A; Zickwolf GK; Houseal TW; Flint AF; Klinger KW
    Hum Genet; 1992 Dec; 90(4):368-70. PubMed ID: 1483692
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [A noninvasive approach to studying fetal cells for prenatal diagnosis of chromosomal aneuploidies].
    Zolotukhina TV; Shilova NV; Zamulaeva IA; Smirnova SG; Orlova NV; Saenko AS
    Genetika; 1999 Oct; 35(10):1422-30. PubMed ID: 10624587
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isolating fetal cells from maternal blood. Advances in prenatal diagnosis through molecular technology.
    Simpson JL; Elias S
    JAMA; 1993 Nov; 270(19):2357-61. PubMed ID: 8230600
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Antenatal diagnosis of fetal sex by detection of Y-chromatin containing cells in maternal blood (author's transl)].
    Faust J; Bewerunge A; Habedank M; Kopecky P
    Geburtshilfe Frauenheilkd; 1976 Dec; 36(12):1091-8. PubMed ID: 1010299
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Feasibility study of using fetal DNA in maternal plasma for non-invasive prenatal diagnosis.
    Liu FM; Wang XY; Feng X; Wang W; Ye YX; Chen H
    Acta Obstet Gynecol Scand; 2007; 86(5):535-41. PubMed ID: 17464580
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isolation of fetal erythroid cells from maternal blood based on expression of erythropoietin receptors.
    Valerio D; Aiello R; Altieri V
    Mol Hum Reprod; 1997 May; 3(5):451-5. PubMed ID: 9239731
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antenatal sex determination in blood from pregnant women.
    Siebers JW; Knauf I; Hillemanns HG
    Humangenetik; 1975 Aug; 28(4):273-80. PubMed ID: 1176117
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessment of efficacy of cell separation techniques used in the enrichment of foetal erythroblasts from maternal blood: triple density gradient vs. single density gradient.
    Al-Mufti R; Hambley H; Farzaneh F; Nicolaides KH
    Clin Lab Haematol; 2004 Apr; 26(2):123-8. PubMed ID: 15053806
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Erythroid-specific antibodies enhance detection of fetal nucleated erythrocytes in maternal blood.
    Bianchi DW; Zickwolf GK; Yih MC; Flint AF; Geifman OH; Erikson MS; Williams JM
    Prenat Diagn; 1993 Apr; 13(4):293-300. PubMed ID: 7685093
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.