These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 7052418)

  • 1. Rectangular fluctuations in potential of the afferent nerve terminal during depolarization in the frog muscle spindle.
    Ito F; Komatsu Y
    Neurosci Lett; 1980 Jan; 16(1):1-3. PubMed ID: 7052418
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calcium spike induced by electrical stimulation to the sensory nerve terminal of the frog muscle spindle.
    Ito F; Komatsu Y; Fujitsuka N
    Neurosci Lett; 1981 Dec; 27(2):135-7. PubMed ID: 6275318
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calcium-dependent regenerative responses in the afferent nerve terminal of the frog muscle spindle.
    Ito F; Komatsu Y
    Brain Res; 1979 Oct; 175(1):160-4. PubMed ID: 487144
    [No Abstract]   [Full Text] [Related]  

  • 4. GK(Ca)-dependent cyclic potential changes in the sensory nerve terminal of frog muscle spindle.
    Ito F; Komatsu Y; Fujitsuka N
    Brain Res; 1982 Dec; 252(1):39-50. PubMed ID: 6293658
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of anions on calcium component in sensory nerve terminal of frog muscle spindles.
    Ito F; Komatsu Y; Fujitsuka N
    Brain Res; 1982 Dec; 252(1):197-200. PubMed ID: 6293656
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of ruthenium ions on the sensory terminal discharges of the frog muscle spindle.
    Ito F; Fujitsuka N; Komatsu Y
    Brain Res; 1983 Oct; 276(2):277-88. PubMed ID: 6194862
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrical threshold of the sensory nerve terminal of the frog muscle spindle: a role of spindle potential for generating afferent impulses.
    Ito F; Fujitsuka N
    Neurosci Lett; 1983 Jun; 37(3):233-7. PubMed ID: 6310449
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Delayed depolarization and slow sodium currents in cutaneous afferents.
    Honmou O; Utzschneider DA; Rizzo MA; Bowe CM; Waxman SG; Kocsis JD
    J Neurophysiol; 1994 May; 71(5):1627-37. PubMed ID: 8064338
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Site of origin of calcium spike in frog muscle spindle.
    Ito F; Komatsu Y; Kaneko N
    Brain Res; 1980 Dec; 202(2):459-63. PubMed ID: 6449228
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sodium-dependent depolarizing potentials in veratrinized crayfish muscle fibres.
    Lehouelleur J; Laszczyca P; Bruner J
    Neurosci Lett; 1988 Jul; 89(3):299-304. PubMed ID: 3419629
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Separation of two voltage-sensitive potassium currents, and demonstration of a tetrodotoxin-resistant calcium current in frog motoneurones.
    Barrett EF; Barret JN
    J Physiol; 1976 Mar; 255(3):737-74. PubMed ID: 1083431
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plateau pattern of afferent discharge rate from frog muscle spindles.
    Sokabe M; Nunogaki K; Naruse K; Soga H; Fujitsuka N; Yoshimura A; Ito F
    J Neurophysiol; 1993 Jul; 70(1):275-83. PubMed ID: 8395580
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Frog muscle spindles with unbranched myelinated afferent axons: the response to stretch and the length of the first myelinated segment.
    Ito F; Komatsu Y
    J Physiol; 1977 Jan; 264(3):881-91. PubMed ID: 139468
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A fast-activated inward calcium current in twitch muscle fibres of the frog (Rana montezume).
    Cota G; Stefani E
    J Physiol; 1986 Jan; 370():151-63. PubMed ID: 2420972
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calcium-activated inward spike after-currents in bursting neurone R15 of Aplysia.
    Lewis DV
    J Physiol; 1988 Jan; 395():285-302. PubMed ID: 2457678
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distribution of TTX-sensitive voltage-gated sodium channels in primary sensory endings of mammalian muscle spindles.
    Carrasco DI; Vincent JA; Cope TC
    J Neurophysiol; 2017 Apr; 117(4):1690-1701. PubMed ID: 28123009
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Endogenous pacemaker activity of rat tumour somatotrophs.
    Kwiecien R; Robert C; Cannon R; Vigues S; Arnoux A; Kordon C; Hammond C
    J Physiol; 1998 May; 508 ( Pt 3)(Pt 3):883-905. PubMed ID: 9518740
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Control of the variability of the afferent discharge rate in frog muscle spindle by potassium blockers.
    Ito F; Komatsu Y; Kaneko N; Katsuta N
    Brain Res; 1981 Jul; 216(1):199-202. PubMed ID: 6266586
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The action of tetrodotoxin on the frog's isolated muscle spindle.
    Albuquerque EX; Chung SH; Ottoson D
    Acta Physiol Scand; 1969 Mar; 75(3):301-12. PubMed ID: 5790222
    [No Abstract]   [Full Text] [Related]  

  • 20. Resting membrane potential and potassium currents in cultured parasympathetic neurones from rat intracardiac ganglia.
    Xu ZJ; Adams DJ
    J Physiol; 1992 Oct; 456():405-24. PubMed ID: 1284080
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.