These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 7052506)
21. Development of amygdaloid cholinergic mediation of passive avoidance learning in the rat. I. Muscarinic mechanisms. Duméry V; Blozovski D Exp Brain Res; 1987; 67(1):61-9. PubMed ID: 3622683 [TBL] [Abstract][Full Text] [Related]
22. Modification of motor activity, passive avoidance conditioning and evoked potentials by microinjections of strychnine in both caudate nuclei in cats. Tellez-Villagra C; Vazquez F; de la Mora P; Brust-Carmona H Pharmacol Biochem Behav; 1981 Feb; 14(2):193-9. PubMed ID: 7193884 [TBL] [Abstract][Full Text] [Related]
23. Effects of intracerebral administration of atropine and morphine on the caudate stimulation-induced caudate spindle in rats. Kamata K; Aoki H; Kameyama T J Pharmacobiodyn; 1981 Oct; 4(10):788-93. PubMed ID: 7320830 [TBL] [Abstract][Full Text] [Related]
24. Effects of antimuscarinic cholinergic drugs injected systemically or into the hippocampo-entorhinal area upon passive avoidance learning in young rats. Blozovski D; Hennocq N Psychopharmacology (Berl); 1982; 76(4):351-8. PubMed ID: 6812110 [TBL] [Abstract][Full Text] [Related]
25. [The effect of multiple administrations of beta-endorphin and an enkephalinase inhibitor into the rat caudate nucleus on the realization of an avoidance conditioned reflex]. Iakimovskiĭ AF Zh Vyssh Nerv Deiat Im I P Pavlova; 1995; 45(1):101-6. PubMed ID: 7754679 [TBL] [Abstract][Full Text] [Related]
26. Learning deficits produced by chronic and reversible lesions of the corpus striatum in rats. Prado-Alcalá RA; Grinberg ZJ; Arditti ZL; García MM; Prieto HG; Brust-Carmona H Physiol Behav; 1975 Sep; 15(3):283-7. PubMed ID: 1208671 [TBL] [Abstract][Full Text] [Related]
27. Differential effects of microinjections of d-amphetamine into the nucleus accumbens or the caudate putamen on the rat's ability to ignore an irrelevant stimulus. Solomon PR; Staton DM Biol Psychiatry; 1982 Jun; 17(6):743-56. PubMed ID: 7104422 [TBL] [Abstract][Full Text] [Related]
28. Dissociation of the anti-punishment activities of chlordiazepoxide and atropine using two heterogeneous passive avoidance tasks. Waddington JL; Olley JE Psychopharmacology (Berl); 1977 Mar; 52(1):93-6. PubMed ID: 403564 [TBL] [Abstract][Full Text] [Related]
29. Involvement of the cholinergic mechanism in depression of the caudate spindle. Ishikawa T; Yamamoto M Jpn J Pharmacol; 1979 Jun; 29(3):399-403. PubMed ID: 537259 [TBL] [Abstract][Full Text] [Related]
30. Time-dependent effects of hippocampo-entorhinal atropine on passive avoidance learning in the young rat. Blozovski D; Harris P Neurosci Lett; 1984 Dec; 52(3):293-8. PubMed ID: 6521972 [TBL] [Abstract][Full Text] [Related]
32. Microinjection of anti-vasopressin serum into limbic structures of the rat brain: effects on passive avoidance responding and on local catecholamine utilization. Veldhuis HD; van Wimersma Greidanus TB; Versteeg DH Brain Res; 1987 Nov; 425(1):167-73. PubMed ID: 3427417 [TBL] [Abstract][Full Text] [Related]
33. [The role of GABA-ergic transmission of caudate-putamen nucleus (CPN) in the control of conditioned behavior in rats]. Mei ZT; Duan SH Sheng Li Xue Bao; 1991 Feb; 43(1):8-13. PubMed ID: 1645479 [TBL] [Abstract][Full Text] [Related]
34. Effects of VA-045, a novel apovincaminic acid derivative, on age-related impairment evidence in electroencephalograph, caudate spindle, a passive avoidance task and cerebral blood flow in rats. Okuyama S; Hashimoto-Kitsukawa S; Ogawa S; Imagawa Y; Kawashima K; Kawashima Y; Araki H; Otomo S Gen Pharmacol; 1994 Nov; 25(7):1311-20. PubMed ID: 7896040 [TBL] [Abstract][Full Text] [Related]
35. Involvement of neurotransmitters in urocortin-induced passive avoidance learning in mice. Telegdy G; Tiricz H; Adamik A Brain Res Bull; 2005 Oct; 67(3):242-7. PubMed ID: 16144661 [TBL] [Abstract][Full Text] [Related]
36. Effect of atropine and propranolol on retrieval enhancement by a novel experience or by injection of beta-endorphin prior to testing in rats. Netto CA; Oliveira CB; Gianlupi A; Quillfeldt J Braz J Med Biol Res; 1990; 23(1):59-63. PubMed ID: 2143682 [TBL] [Abstract][Full Text] [Related]
37. Blockade of cholinergic receptors by an irreversible antagonist, propylbenzilylcholine mustard (PrBCM), in the rat cerebral cortex causes deficits in passive avoidance learning. Fukuchi I; Kato S; Nakahiro M; Uchida S; Ishida R; Yoshida H Brain Res; 1987 Jan; 400(1):53-61. PubMed ID: 3028567 [TBL] [Abstract][Full Text] [Related]
38. Anticholinergic drugs potentiate dopamine D1 but not D2 antagonists on a conditioned avoidance task in rats. Iorio LC; Cohen M; Coffin VL J Pharmacol Exp Ther; 1991 Jul; 258(1):118-23. PubMed ID: 1830098 [TBL] [Abstract][Full Text] [Related]
39. Learning deficits induced by cholinergic blockade of the caudate nucleus as a function of experience. Prado-Alcalá RA; Cobos-Zapiaín GC Brain Res; 1977 Dec; 138(1):190-6. PubMed ID: 589468 [No Abstract] [Full Text] [Related]
40. Facilitation of avoidance behavior by vasopressin fragments microinjected into limbic-midbrain structures. Kovács GL; Veldhuis HD; Versteeg DH; De Wied D Brain Res; 1986 Apr; 371(1):17-24. PubMed ID: 3708341 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]