BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 7052928)

  • 1. On the role of NADPH and glutathione in the catalytic mechanism of hepatic thyroxine 5'-deiodination.
    Sato T; Maruyama S; Nomura K
    Endocrinol Jpn; 1981 Aug; 28(4):451-9. PubMed ID: 7052928
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Correlation of hepatic thyroxine 5'-monodeiodination with hexose monophosphate shunt in young rats.
    Sato T; Maruyama S; Saida K; Takata I
    Pediatr Res; 1982 May; 16(5):377-80. PubMed ID: 7099756
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Observations on the factors that control the generation of triiodothyronine from thyroxine in rat liver and the nature of the defect induced by fasting.
    Balsam A; Ingbar SH
    J Clin Invest; 1979 Jun; 63(6):1145-56. PubMed ID: 36408
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Properties of cytosolic components activating rat hepatic 5' [corrected]-deiodination in the presence of NADPH.
    Sawada K; Hummel BC; Walfish PG
    Biochem J; 1986 Mar; 234(2):391-8. PubMed ID: 3718474
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Somatostatin inhibits rat hepatic T4-5'-deiodinase. The effect is independent of the associated hypoinsulinemia.
    Gavin LA; Moeller M
    J Clin Invest; 1983 Dec; 72(6):2020-30. PubMed ID: 6139387
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Qualitative and quantitative differences in the pathways of extrathyroidal triiodothyronine generation between euthyroid and hypothyroid rats.
    Silva JE; Gordon MB; Crantz FR; Leonard JL; Larsen PR
    J Clin Invest; 1984 Apr; 73(4):898-907. PubMed ID: 6707210
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Potential of brown adipose tissue type II thyroxine 5'-deiodinase as a local and systemic source of triiodothyronine in rats.
    Silva JE; Larsen PR
    J Clin Invest; 1985 Dec; 76(6):2296-305. PubMed ID: 4077981
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dietary modification of thyroxine deiodination in rat liver is not mediated by hepatic sulfhydryls.
    Gavin LA; McMahon FA; Moeller M
    J Clin Invest; 1980 Apr; 65(4):943-6. PubMed ID: 7358854
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of the effects of propylthiouracil and selenium deficiency on T3 production in the rat.
    Veronikis IE; Braverman LE; Alex S; Fang SL; Norvell B; Emerson CH
    Endocrinology; 1996 Jun; 137(6):2580-5. PubMed ID: 8641212
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Iodothyronine deiodinase activities in FRTL5 cells: predominance of type I 5'-deiodinase.
    Borges M; Ingbar SH; Silva JE
    Endocrinology; 1990 Jun; 126(6):3059-68. PubMed ID: 2351108
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nicotinamide prevents sweet beverage-induced hepatic steatosis in rats by regulating the G6PD, NADPH/NADP
    Mejía SÁ; Gutman LAB; Camarillo CO; Navarro RM; Becerra MCS; Santana LD; Cruz M; Pérez EH; Flores MD
    Eur J Pharmacol; 2018 Jan; 818():499-507. PubMed ID: 29069580
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The substrate specificity, tissue specificity and regulation of the 5' deiodination systems in rat liver and kidney tissues.
    Kobayashi S; Gao Y; Pittman CS
    Endocrinol Jpn; 1985 Dec; 32(6):781-92. PubMed ID: 3833526
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Formation of diiodotyrosine from thyroxine. Ether-link cleavage, an alternate pathway of thyroxine metabolism.
    Balsam A; Sexton F; Borges M; Ingbar SH
    J Clin Invest; 1983 Oct; 72(4):1234-45. PubMed ID: 6630509
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiple NADPH-producing pathways control glutathione (GSH) content in retina.
    Winkler BS; DeSantis N; Solomon F
    Exp Eye Res; 1986 Nov; 43(5):829-47. PubMed ID: 3803464
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of chronic treatment with estrogen and thyroxine, alone and combined, on the rate of deiodination of L-thyroxine to 3,5,3'-triiodothyronine in vitro.
    Scammell JG; Shiverick KT; Fregly MJ
    Pharmacology; 1986; 33(1):52-7. PubMed ID: 3737676
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Changes induced by cadmium administration on thyroxine deiodination and sulfhydryl groups in rat liver.
    Paier B; Hagmüller K; Noli MI; Gonzalez Pondal M; Stiegler C; Zaninovich AA
    J Endocrinol; 1993 Aug; 138(2):219-24. PubMed ID: 8228730
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Iodothyronine deiodination in the brain of diabetic rats: influence of thyroid status.
    Gavin LA; Cavalieri RR
    J Endocrinol Invest; 1986 Apr; 9(2):127-33. PubMed ID: 3519744
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of hyperthyroidism on rat liver glutathione metabolism: related enzymes' activities, efflux, and turnover.
    Fernández V; Simizu K; Barros SB; Azzalis LA; Pimentel R; Junqueira VB; Videla LA
    Endocrinology; 1991 Jul; 129(1):85-91. PubMed ID: 1675989
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibition of hepatic deiodination of thyroxine is caused by selenium deficiency in rats.
    Beckett GJ; Beddows SE; Morrice PC; Nicol F; Arthur JR
    Biochem J; 1987 Dec; 248(2):443-7. PubMed ID: 3435458
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of thyroid hormones, antithyroid drugs and iodide on in vitro conversion of thyroxine to triiodothyronine.
    Aizawa T; Yamada T
    Clin Exp Pharmacol Physiol; 1981; 8(3):215-25. PubMed ID: 6166420
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.