BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 7053574)

  • 21. Correlation of the inability to sustain growth in defined serum-free medium with the suppression of tumorigenicity in Wilms' nephroblastoma.
    Dowdy SF; Weissman BE; Stanbridge EJ
    J Cell Physiol; 1991 May; 147(2):248-55. PubMed ID: 1645741
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Suppressor genes for malignant and anchorage-independent phenotypes located on human chromosome 9 have no dosage effects.
    Islam MQ; Islam K
    Cytogenet Cell Genet; 2000; 88(1-2):103-9. PubMed ID: 10773681
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The ability of normal mouse cells to reduce the malignant potential of transformed mouse bladder epithelial cells depends on their somatic origin.
    Cowell JK; Franks LM
    Int J Cancer; 1984 May; 33(5):657-67. PubMed ID: 6724740
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Analysis of oncogene, tumor suppressor gene, and chromosomal alterations in HeLa x osteosarcoma somatic cell hybrids.
    Isfort RJ; Cody DB; Lovell GJ; Gioeli D; Weissman BE; Doersen CJ
    Mol Carcinog; 1999 May; 25(1):30-41. PubMed ID: 10331742
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Clonal analysis of the expression of multiple transformation phenotypes and tumorigenicity by morphologically transformed 10T1/2 cells.
    Smith GJ; Bell WN; Grisham JW
    Cancer Res; 1993 Feb; 53(3):500-8. PubMed ID: 8425183
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Microfilament bundles in transformed mouse CLID x transformed CHO cell hybrids. Correlation with tumorigenicity in nude mice.
    Celis JE; Small JV; Kaltoft K; Celis A
    Exp Cell Res; 1979 Apr; 120(1):79-86. PubMed ID: 571343
    [No Abstract]   [Full Text] [Related]  

  • 27. Growth-regulatory control of human cell hybrids in nude mice.
    Stanbridge EJ; Ceredig R
    Cancer Res; 1981 Feb; 41(2):573-80. PubMed ID: 7448804
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Lack of tumor suppression but induced loss of copies of indigenous chromosome 10 in vitro following microcell-mediated transfer of a deleted human der(9)t(X;9) chromosome to Syrian hamster BHK-191-5C cells.
    Islam MQ; Islam K
    Cytogenet Cell Genet; 1999; 87(1-2):11-8. PubMed ID: 10640804
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Analysis of myogenesis by somatic cell hybridization. II. Retention of myogenic competence and suppression of transformed properties in hybrids between differentiation competent and incompetent rat L6 myoblasts.
    Lawrence JB; Coleman JR
    J Cell Physiol; 1983 Jan; 114(1):99-110. PubMed ID: 6826666
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Genetic analysis of an in vitro model system for human papillomavirus type 16-associated tumorigenesis.
    Seagon S; Dürst M
    Cancer Res; 1994 Nov; 54(21):5593-8. PubMed ID: 7923202
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A threshold effect in the induction of tumorigenicity of an established human cell line by v-mos.
    O'Hara BM; Blair DG
    Oncogene; 1988 Sep; 3(3):295-9. PubMed ID: 2974527
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Loss of the tumorigenic phenotype with in vitro, but not in vivo, passaging of a novel series of human bronchial epithelial cell lines: possible role of an alpha 5/beta 1-integrin-fibronectin interaction.
    Schiller JH; Bittner G
    Cancer Res; 1995 Dec; 55(24):6215-21. PubMed ID: 8521416
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Noncoordinate expression of SV40-induced transformation and tumorigenicity in mouse cell hybrids.
    Howell N; Sager R
    Somatic Cell Genet; 1979 Jan; 5(1):129-43. PubMed ID: 219552
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Examination of the oncogenic potential of H19 gene in HeLa x normal human fibroblast hybrid cells.
    Tsujimoto H; Nishizuka S; Redpath LJ; Stanbridge EJ
    Int J Oncol; 2001 Jul; 19(1):89-95. PubMed ID: 11408927
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Tumorigenicity of human HT1080 fibrosarcoma X normal fibroblast hybrids: chromosome dosage dependency.
    Benedict WF; Weissman BE; Mark C; Stanbridge EJ
    Cancer Res; 1984 Aug; 44(8):3471-9. PubMed ID: 6744274
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Expression of the transformed phenotype and tumorigenicity in somatic cell hybrids.
    Marshall CJ
    J Cell Sci; 1979 Oct; 39():319-27. PubMed ID: 575140
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Chromosomal radiosensitivity during the G2 cell cycle period and cytopathology of human normal x tumor cell hybrids.
    Sanford KK; Parshad R; Stanbridge EJ; Frost JK; Jones GM; Wilkinson JE; Tarone RE
    Cancer Res; 1986 Apr; 46(4 Pt 2):2045-9. PubMed ID: 3948180
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Suppression of tumorigenicity in somatic cell hybrids. IV. Chromosomes of normal human cells associated with suppression of tumorigenicity in hybrids with D98AH2 carcinoma cells.
    Klinger HP; Kaelbling M
    Cytogenet Cell Genet; 1986; 42(4):225-35. PubMed ID: 3463446
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Suppression of tumorigenicity, but not invasion, in glioblastoma/HeLa cell hybrids.
    Ess K; Chen H; Kier A; Brackenbury R
    J Cell Physiol; 1995 Mar; 162(3):341-7. PubMed ID: 7860642
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [The role of glycosphingolipids in the expression of neoplastic phenotype. III. Changes in glycosphingolipids related to the capacity of neoplastic cells for metastasis and tumor growth in vivo].
    Ugorski M
    Postepy Hig Med Dosw; 1992; 46(2):191-208. PubMed ID: 1470581
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.