BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 7055558)

  • 1. Discrimination of three parallel pathways of lactate transport in the human erythrocyte membrane by inhibitors and kinetic properties.
    Deuticke B; Beyer E; Forst B
    Biochim Biophys Acta; 1982 Jan; 684(1):96-110. PubMed ID: 7055558
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetic analysis of L-lactate transport in human erythrocytes via the monocarboxylate-specific carrier system.
    De Bruijne AW; Vreeburg H; Van Steveninck J
    Biochim Biophys Acta; 1983 Aug; 732(3):562-8. PubMed ID: 6871216
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stereoselective, SH-dependent transfer of lactate in mammalian erythrocytes.
    Deuticke B; Rickert I; Beyer E
    Biochim Biophys Acta; 1978 Feb; 507(1):137-55. PubMed ID: 23829
    [No Abstract]   [Full Text] [Related]  

  • 4. The mechanism of lactate transport in human erythrocytes.
    Dubinsky WP; Racker E
    J Membr Biol; 1978 Dec; 44(1):25-36. PubMed ID: 32398
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A rabbit erythrocyte membrane protein associated with L-lactate transport.
    Jennings ML; Adams-Lackey M
    J Biol Chem; 1982 Nov; 257(21):12866-71. PubMed ID: 7130184
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reversible inhibition of anion exchange in human erythrocytes by an inorganic disulfonate, tetrathionate.
    Deuticke B; von Bentheim M; Beyer E; Kamp D
    J Membr Biol; 1978 Dec; 44(2):135-58. PubMed ID: 731685
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterisation of erythrocyte transmembrane exchange of trifluoroacetate using 19F-NMR: evidence for transport via the monocarboxylate transporter.
    Xu AS; Kuchel PW
    Biochim Biophys Acta; 1993 Jul; 1150(1):35-44. PubMed ID: 8334136
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of oxalate transport by the human erythrocyte band 3 protein.
    Jennings ML; Adame MF
    J Gen Physiol; 1996 Jan; 107(1):145-59. PubMed ID: 8741736
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transport of lactate in Plasmodium falciparum-infected human erythrocytes.
    Kanaani J; Ginsburg H
    J Cell Physiol; 1991 Dec; 149(3):469-76. PubMed ID: 1660483
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mediated transport of anions in band 3-phospholipid vesicles.
    Köhne W; Haest CW; Deuticke B
    Biochim Biophys Acta; 1981 Jun; 644(1):108-20. PubMed ID: 7260063
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of inorganic and organic anions on the transport of phosphoenol-pyruvate across the erythrocyte membrane.
    Hamasaki N; Matsuyama H; Hirota-Chigita C; Nanri H
    Tokai J Exp Clin Med; 1982; 7 Suppl():113-9. PubMed ID: 7186217
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Alternative-substrate inhibition of L-lactate transport via the monocarboxylate-specific carrier system in human erythrocytes.
    de Bruijne AW; Vreeburg H; van Steveninck J
    Biochim Biophys Acta; 1985 Feb; 812(3):841-4. PubMed ID: 3970911
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protein-mediated chloride-phosphate and lactate-lactate exchange in cytoskeleton-free vesicles budded from rabbit erythrocytes.
    Donovan JA
    Biochim Biophys Acta; 1985 Jun; 816(1):68-76. PubMed ID: 4005240
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relationship of net chloride flow across the human erythrocyte membrane to the anion exchange mechanism.
    Knauf PA; Law FY; Marchant PJ
    J Gen Physiol; 1983 Jan; 81(1):95-126. PubMed ID: 6833998
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lactate influx into red blood cells of athletic and nonathletic species.
    Skelton MS; Kremer DE; Smith EW; Gladden LB
    Am J Physiol; 1995 May; 268(5 Pt 2):R1121-8. PubMed ID: 7771571
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transport of pyruvate nad lactate into human erythrocytes. Evidence for the involvement of the chloride carrier and a chloride-independent carrier.
    Halestrap AP
    Biochem J; 1976 May; 156(2):193-207. PubMed ID: 942406
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dual effect of membrane cholesterol on simple and mediated transport processes in human erythrocytes.
    Grunze M; Forst B; Deuticke B
    Biochim Biophys Acta; 1980 Aug; 600(3):860-9. PubMed ID: 7407148
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibition of L-lactate transport and band 3-mediated anion transport in erythrocytes by the novel stilbenedisulphonate N,N,N',N'-tetrabenzyl-4,4'-diaminostilbene-2,2'-disulpho nat e (TBenzDS).
    Poole RC; Cranmer SL; Holdup DW; Halestrap AP
    Biochim Biophys Acta; 1991 Nov; 1070(1):69-76. PubMed ID: 1751540
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparison of the inhibitory potency of reversibly acting inhibitors of anion transport on chloride and sulfate movements across the human red cell membrane.
    Ku CP; Jennings ML; Passow H
    Biochim Biophys Acta; 1979 May; 553(1):132-41. PubMed ID: 454583
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monocarboxylate transport in erythrocytes.
    Deuticke B
    J Membr Biol; 1982; 70(2):89-103. PubMed ID: 6764785
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.