BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 7055693)

  • 1. The sprouting of septal afferents to the dentate gyrus after lesions of the entorhinal cortex in adult rats.
    Stanfield BB; Cowan WM
    Brain Res; 1982 Jan; 232(1):162-70. PubMed ID: 7055693
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lesion-induced synapse reorganization in the hippocampus of cats: sprouting of entorhinal, commissural/associational, and mossy fiber projections after unilateral entorhinal cortex lesions, with comments on the normal organization of these pathways.
    Steward O
    Hippocampus; 1992 Jul; 2(3):247-68. PubMed ID: 1284974
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sprouting of central noradrenergic fibers in the dentate gyrus following combined lesions of its entorhinal and septal afferents.
    Peterson GM
    Hippocampus; 1994 Dec; 4(6):635-48. PubMed ID: 7704108
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exposure to trimethyltin significantly enhances acetylcholinesterase staining in the rat dentate gyrus.
    Woodruff ML; Baisden RH
    Neurotoxicol Teratol; 1990; 12(1):33-9. PubMed ID: 1690343
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ethanol exposure following unilateral entorhinal deafferentation alters synaptic reorganization in the rat dentate gyrus: a quantitative analysis of acetylcholinesterase histochemistry.
    Orona E; Hunter BE; Walker DW
    Exp Neurol; 1988 Jul; 101(1):114-31. PubMed ID: 3391254
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effects of neonatal 6-hydroxydopamine treatment on morphological plasticity in the dentate gyrus of the rat following entorhinal lesions.
    Amaral DG; Avendaño C; Cowan WM
    J Comp Neurol; 1980 Nov; 194(1):171-91. PubMed ID: 7440794
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiple cholinergic markers are unexpectedly not altered in the rat dentate gyrus following entorhinal cortex lesions.
    Aubert I; Poirier J; Gauthier S; Quirion R
    J Neurosci; 1994 May; 14(5 Pt 1):2476-84. PubMed ID: 8182423
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Increased sensitivity to adenosine in the rat dentate gyrus molecular layer two weeks after partial entorhinal lesions.
    Kahle JS; Ułas J; Cotman CW
    Brain Res; 1993 Apr; 609(1-2):201-10. PubMed ID: 8508304
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Histochemical evidence for a post-lesion reorganization of cholinergic afferents in the hippocampal formation of the mature cat.
    Steward O; Messenheimer JA
    J Comp Neurol; 1978 Apr; 178(4):697-709. PubMed ID: 632377
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stereological analysis of the reorganization of the dentate gyrus following entorhinal cortex lesion in mice.
    Phinney AL; Calhoun ME; Woods AG; Deller T; Jucker M
    Eur J Neurosci; 2004 Apr; 19(7):1731-40. PubMed ID: 15078547
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Decline in reactive fiber growth in the dentate gyrus of aged rats compared to young adult rats following entorhinal cortex removal.
    Scheff SW; Benardo LS; Cotman CW
    Brain Res; 1980 Oct; 199(1):21-38. PubMed ID: 7407623
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An autoradiographic study of the development of the entorhinal and commissural afferents to the dentate gyrus of the rat.
    Fricke R; Cowan WM
    J Comp Neurol; 1977 May; 173(2):231-50. PubMed ID: 856883
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The response of the associational afferents to the dentate gyrus to simultaneous or sequential elimination of the commissural and entorhinal afferents.
    Peterson GM
    Brain Res Bull; 1987 Aug; 19(2):245-59. PubMed ID: 2444313
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cholinergic axons from delayed septal implants and sympathetic fibers co-exist in the denervated dentate gyrus.
    Kromer LF
    Brain Res Bull; 1982; 9(1-6):539-44. PubMed ID: 7172039
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Entorhinal cortex of the monkey: V. Projections to the dentate gyrus, hippocampus, and subicular complex.
    Witter MP; Amaral DG
    J Comp Neurol; 1991 May; 307(3):437-59. PubMed ID: 1713237
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An autoradiographic study of the efferent connections of the entorhinal cortex in the rat.
    Wyss JM
    J Comp Neurol; 1981 Jul; 199(4):495-512. PubMed ID: 6168668
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Medial septal area lesions disrupt theta rhythm and cholinergic staining in medial entorhinal cortex and produce impaired radial arm maze behavior in rats.
    Mitchell SJ; Rawlins JN; Steward O; Olton DS
    J Neurosci; 1982 Mar; 2(3):292-302. PubMed ID: 7062110
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Topography between the entorhinal cortex and the dentate septotemporal axis in rats: I. Medial and intermediate entorhinal projecting cells.
    Ruth RE; Collier TJ; Routtenberg A
    J Comp Neurol; 1982 Jul; 209(1):69-78. PubMed ID: 7119174
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differences in lesion-induced hippocampal plasticity between mice and rats.
    Kadish I; Van Groen T
    Neuroscience; 2003; 116(2):499-509. PubMed ID: 12559105
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antibody to NGF inhibits collateral sprouting of septohippocampal fibers following entorhinal cortex lesion in adult rats.
    Van der Zee CE; Fawcett J; Diamond J
    J Comp Neurol; 1992 Dec; 326(1):91-100. PubMed ID: 1479072
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.