These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 7055714)

  • 1. Vestibular axons form synapses on abnormally derived Mauthner cells.
    Model PG; Wurzelmann S
    Brain Res; 1982 Jan; 255(1):123-9. PubMed ID: 7055714
    [No Abstract]   [Full Text] [Related]  

  • 2. Regulation of the Mauthner cell following unilateral rotation of the prospective hindbrain in axolotl (Ambystoma mexicanum) neurulae.
    Model PG
    Brain Res; 1978 Sep; 153(1):135-43. PubMed ID: 679039
    [No Abstract]   [Full Text] [Related]  

  • 3. Prospective forebrain-midbrain from axolotl neurulae can be reprogrammed to differentiate as Mauthner cell-containing medulla.
    Model PG
    Brain Res; 1982 Jan; 255(1):109-21. PubMed ID: 7055713
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A light and electron microscopic study of the development of the Mauthner cell and vestibular nerve in the axolotl.
    Leber SM; Model PG
    J Comp Neurol; 1991 Nov; 313(1):17-30. PubMed ID: 1761753
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of precocious and delayed afferent arrival on synapse localization on the amphibian Mauthner cell.
    Leber SM; Model PG
    J Comp Neurol; 1991 Nov; 313(1):31-44. PubMed ID: 1761755
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Developmental interactions in the growth and branching of the lateral dendrite of Mauthner's cell (Ambystoma mexicanum).
    Kimmel CB; Schabtach E; Kimmel RJ
    Dev Biol; 1977 Feb; 55(2):244-59. PubMed ID: 838120
    [No Abstract]   [Full Text] [Related]  

  • 7. Synaptogenesis and its relation to growth of the postsynaptic cell: a quantitative study of the developing Mauthner neuron of the axolotl.
    Jacoby J; Kimmel CB
    J Comp Neurol; 1982 Feb; 204(4):364-76. PubMed ID: 7061738
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cochlear synaptogenesis after sectioning the efferent bundle.
    Pujol R; Carlier E
    Brain Res; 1982 Jan; 255(1):151-4. PubMed ID: 7055717
    [No Abstract]   [Full Text] [Related]  

  • 9. Regenerating afferent fibers stimulate the recovery of mauthner cell dendritic branching in the axolotl.
    Goodman LA; Covell DA; Model PG
    J Neurosci; 1988 Aug; 8(8):3025-34. PubMed ID: 3411367
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Morphogenesis and synaptogenesis of the zebrafish Mauthner neuron.
    Kimmel CB; Sessions SK; Kimmel RJ
    J Comp Neurol; 1981 May; 198(1):101-20. PubMed ID: 7229136
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An ultrastructural study of the development of synaptic endings in the nucleus vestibularis tangentialis of the chick embryo.
    Peusner KD
    Neuroscience; 1981; 6(11):2335-50. PubMed ID: 7329550
    [No Abstract]   [Full Text] [Related]  

  • 12. Synapse formation is related to the onset of neuron-specific enolase immunoreactivity in the avian auditory and vestibular systems.
    Whitehead MC; Marangos PJ; Connolly SM; Morest DK
    Dev Neurosci; 1982; 5(4):298-307. PubMed ID: 7140580
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Eliminating afferent impulse activity does not alter the dendritic branching of the amphibian Mauthner cell.
    Goodman LA; Model PG
    J Neurobiol; 1990 Mar; 21(2):283-94. PubMed ID: 2155302
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Morphology of afferent synapses in the Mauthner cell of larval Xenopus laevis.
    Cioni C; de Palma F; Stefanelli A
    J Comp Neurol; 1989 Jun; 284(2):205-14. PubMed ID: 2754034
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distribution and Structure of Synapses on Medial Vestibular Nuclear Neurons Targeted by Cerebellar Flocculus Purkinje Cells and Vestibular Nerve in Mice: Light and Electron Microscopy Studies.
    Matsuno H; Kudoh M; Watakabe A; Yamamori T; Shigemoto R; Nagao S
    PLoS One; 2016; 11(10):e0164037. PubMed ID: 27711146
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The cytology of the posterior lateral line lobe of high-frequency weakly electric fish (Gymnotidae): dendritic differentiation and synaptic specificity in a simple cortex.
    Maler L; Sas EK; Rogers J
    J Comp Neurol; 1981 Jan; 195(1):87-139. PubMed ID: 7204653
    [No Abstract]   [Full Text] [Related]  

  • 17. Morphologically distinct classes of inhibitory synapses arise from the same neurons: ultrastructural identification from crossed vestibular interneurons intracellularly stained with HRP.
    Triller A; Korn H
    J Comp Neurol; 1981 Nov; 203(1):131-55. PubMed ID: 7309914
    [No Abstract]   [Full Text] [Related]  

  • 18. An electron microscope study of spinal afferents to the lateral reticular nucleus of the medulla oblongata in the cat.
    Mizuno N; Nakamura Y
    Brain Res; 1973 Apr; 53(1):187-91. PubMed ID: 4697245
    [No Abstract]   [Full Text] [Related]  

  • 19. Distribution of synapses on identified cell types in a gustatory subdivision of the nucleus of the solitary tract.
    Whitehead MC
    J Comp Neurol; 1993 Jun; 332(3):326-40. PubMed ID: 8331219
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mauthner neurons survive metamorphosis in anurans: a comparative HRP study on the cytoarchitecture of Mauthner neurons in amphibians.
    Will U
    J Comp Neurol; 1986 Feb; 244(1):111-20. PubMed ID: 3081602
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.