These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 7057184)

  • 61. Modulation of membrane transport by free fatty acids: inhibition of synaptosomal sodium-dependent amino acid uptake.
    Rhoads DE; Ockner RK; Peterson NA; Raghupathy E
    Biochemistry; 1983 Apr; 22(8):1965-70. PubMed ID: 6849898
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Manipulation of plasma membrane fatty acid composition of fetal rat brain cells grown in a serum-free defined medium.
    Park CC; Hennessey T; Ahmed Z
    J Neurochem; 1990 Nov; 55(5):1537-45. PubMed ID: 2213009
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Influence of low-dose polyunsaturated fatty acids supplementation on the inflammatory response of healthy adults.
    Schubert R; Kitz R; Beermann C; Rose MA; Baer PC; Zielen S; Boehles H
    Nutrition; 2007 Oct; 23(10):724-30. PubMed ID: 17664057
    [TBL] [Abstract][Full Text] [Related]  

  • 64. [Specific contribution of dietary polyunsaturated fatty acids of the n-3 series to the development of nervous system membranes].
    Bourre JM; Chanez C; Dumont O; Durand G; Faivre A; Nouvelot A; Pascal G; Piciotti M
    Reprod Nutr Dev (1980); 1985; 25(1B):335-40. PubMed ID: 3992003
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Developmental studies of the uptake of choline, GABA and dopamine by crude synaptosomal preparations after in vivo or in vitro lead treatment.
    Ramsay PB; Krigman MR; Morell P
    Brain Res; 1980 Apr; 187(2):383-402. PubMed ID: 7370737
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Modulation of native TREK-1 and Kv1.4 K+ channels by polyunsaturated fatty acids and lysophospholipids.
    Danthi S; Enyeart JA; Enyeart JJ
    J Membr Biol; 2003 Oct; 195(3):147-64. PubMed ID: 14724761
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Polyunsaturated fatty acid supplements modulate mast cell membrane microdomain composition.
    Basiouni S; Stöckel K; Fuhrmann H; Schumann J
    Cell Immunol; 2012; 275(1-2):42-6. PubMed ID: 22486927
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Inhibition of gap junctional communication by polyunsaturated fatty acids in WB cells: evidence that connexin 43 is not hyperphosphorylated.
    Hii CS; Ferrante A; Schmidt S; Rathjen DA; Robinson BS; Poulos A; Murray AW
    Carcinogenesis; 1995 Jul; 16(7):1505-11. PubMed ID: 7542175
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Human retinoblastoma Y79 cells contain both insulin-specific mRNA and insulin-binding sites.
    Das A; Pansky B; Budd GC; Reid TW
    Neurosci Lett; 1991 Jan; 121(1-2):231-3. PubMed ID: 2020379
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Insulin-like immunoreactivity in human retinoblastoma Y79 cell line.
    Pansky B; Das A; Budd GC; Reid TW
    Neurosci Lett; 1986 Jul; 68(2):187-91. PubMed ID: 3528929
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Effects of n-3 and n-6 polyunsaturated fatty acids on the growth of fish cells in culture.
    Tocher DR; Dick JR
    Biochem Soc Trans; 1990 Oct; 18(5):915-6. PubMed ID: 2083730
    [No Abstract]   [Full Text] [Related]  

  • 72. Nuclear uptake of retinoids: autoradiographic evidence in retinoblastoma cells in vitro.
    Russell P; Wiggert B; Derr J; Albert D; Craft J; Chader G
    J Neurochem; 1980 Jun; 34(6):1557-60. PubMed ID: 7381482
    [No Abstract]   [Full Text] [Related]  

  • 73. Retinoblastoma Y79 cell line: a study of membrane structures.
    Green AL; Meek ES; White DW; Stevens RH; Ackerman LD; Judisch GF; Patil SR
    Albrecht Von Graefes Arch Klin Exp Ophthalmol; 1979 Oct; 211(4):279-87. PubMed ID: 317224
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Neural inducing factors in neuroblastoma and retinoblastoma cell lines. Extraction with acid ethanol.
    Lopashov GV; Selter H; Montenarh M; Knöchel W; Grunz H; Tiedemann H; Tiedemann H
    Naturwissenschaften; 1992 Aug; 79(8):365-7. PubMed ID: 1522921
    [No Abstract]   [Full Text] [Related]  

  • 75. Uptake and release of choline in cultures of human glioma cells.
    Walum E
    Cell Mol Neurobiol; 1981 Dec; 1(4):389-99. PubMed ID: 6765739
    [TBL] [Abstract][Full Text] [Related]  

  • 76. High concentration of retinoic acid binding protein in a retinoblastoma.
    Daxenbichler G; Daxecker F; Marth C
    Exp Eye Res; 1985 Mar; 40(3):495-6. PubMed ID: 2998849
    [No Abstract]   [Full Text] [Related]  

  • 77. Choline fluxes in primary nerve cell cultures. Correlation with the endocellular metabolism of choline.
    Wong TY; Mandel P; Massarelli R
    Neurochem Int; 1983; 5(1):73-9. PubMed ID: 20487925
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Choline and docosahexaenoic acid during the first 1000 days and children's health and development in low- and middle-income countries.
    Bragg MG; Prado EL; Stewart CP
    Nutr Rev; 2022 Mar; 80(4):656-676. PubMed ID: 34338760
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Choline and DHA in Maternal and Infant Nutrition: Synergistic Implications in Brain and Eye Health.
    Mun JG; Legette LL; Ikonte CJ; Mitmesser SH
    Nutrients; 2019 May; 11(5):. PubMed ID: 31117180
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Essentiality of fatty acids.
    Spector AA
    Lipids; 1999; 34 Suppl():S1-3. PubMed ID: 10419080
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.