These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
90 related articles for article (PubMed ID: 7057392)
1. The effects of serotonin antagonists on the inhibition of primate spinothalamic tract cells produced by stimulation in nucleus raphe magnus or periaqueductal gray. Yezierski RP; Wilcox TK; Willis WD J Pharmacol Exp Ther; 1982 Feb; 220(2):266-77. PubMed ID: 7057392 [TBL] [Abstract][Full Text] [Related]
3. The nucleus raphe magnus suppresses vomiting, and the solitary nucleus and 5-HT are not involved in this suppression. Hattori Y; Hamaguchi C; Yamada Y; Urayama Y; Nakamura E; Koga T; Fukuda H Auton Neurosci; 2010 Jan; 152(1-2):41-8. PubMed ID: 19773202 [TBL] [Abstract][Full Text] [Related]
4. Raphe magnus inhibition of primate T1-T4 spinothalamic cells with cardiopulmonary visceral input. Ammons WS; Blair RW; Foreman RD Pain; 1984 Nov; 20(3):247-260. PubMed ID: 6514373 [TBL] [Abstract][Full Text] [Related]
5. Evidence that an excitatory connection between the periaqueductal gray and nucleus raphe magnus mediates stimulation produced analgesia. Behbehani MM; Fields HL Brain Res; 1979 Jul; 170(1):85-93. PubMed ID: 223721 [TBL] [Abstract][Full Text] [Related]
6. [Changes in background activity of periaqueductal gray neurons through application of serotonin or inhibition of its synthesis]. Piliavskiĭ AI; Iakhintsa VA; Bulgakova NV; Limanskiĭ IuP Neirofiziologiia; 1992; 24(2):169-77. PubMed ID: 1534600 [TBL] [Abstract][Full Text] [Related]
7. Inhibition of primate spinothalamic tract neurons by stimulation in periaqueductal gray or adjacent midbrain reticular formation. Gerhart KD; Yezierski RP; Wilcox TK; Willis WD J Neurophysiol; 1984 Mar; 51(3):450-66. PubMed ID: 6699675 [TBL] [Abstract][Full Text] [Related]
8. Role of glutamatergic receptors located in the nucleus raphe magnus on antinociceptive effect of morphine microinjected into the nucleus cuneiformis of rat. Haghparast A; Soltani-Hekmat A; Khani A; Komaki A Neurosci Lett; 2007 Oct; 427(1):44-9. PubMed ID: 17920194 [TBL] [Abstract][Full Text] [Related]
9. Interaction between central gray and nucleus raphe magnus: role of norepinephrine. Behbehani MM; Pomeroy SL; Mack CE Brain Res Bull; 1981 May; 6(5):361-4. PubMed ID: 6265039 [TBL] [Abstract][Full Text] [Related]
10. Serotoninergic axonal contacts on identified cat spinal dorsal horn neurons and their correlation with nucleus raphe magnus stimulation. Miletic V; Hoffert MJ; Ruda MA; Dubner R; Shigenaga Y J Comp Neurol; 1984 Sep; 228(1):129-41. PubMed ID: 6384280 [TBL] [Abstract][Full Text] [Related]
11. 5-Hydroxytryptamine de Oliveira R; de Oliveira RC; Falconi-Sobrinho LL; da Silva Soares R; Coimbra NC Behav Brain Res; 2017 Jan; 316():294-304. PubMed ID: 27616344 [TBL] [Abstract][Full Text] [Related]
12. Neuroanatomical approaches of the tectum-reticular pathways and immunohistochemical evidence for serotonin-positive perikarya on neuronal substrates of the superior colliculus and periaqueductal gray matter involved in the elaboration of the defensive behavior and fear-induced analgesia. Coimbra NC; De Oliveira R; Freitas RL; Ribeiro SJ; Borelli KG; Pacagnella RC; Moreira JE; da Silva LA; Melo LL; Lunardi LO; Brandão ML Exp Neurol; 2006 Jan; 197(1):93-112. PubMed ID: 16303128 [TBL] [Abstract][Full Text] [Related]
13. Critical role of B3 serotonergic cells in baroreflex inhibition during the defense reaction triggered by dorsal periaqueductal gray stimulation. Bernard JF; Netzer F; Gau R; Hamon M; Laguzzi R; Sévoz-Couche C J Comp Neurol; 2008 Jan; 506(1):108-21. PubMed ID: 17990274 [TBL] [Abstract][Full Text] [Related]
14. [The participation of the inhibitory locomotor system of the brain stem in regulating pain sensitivity]. Mileĭkovskiĭ BIu; Verevkina SV; Nozdrachev AD Fiziol Zh SSSR Im I M Sechenova; 1989 Aug; 75(8):1051-6. PubMed ID: 2612655 [TBL] [Abstract][Full Text] [Related]
15. Intrinsic neural circuits between dorsal midbrain neurons that control fear-induced responses and seizure activity and nuclei of the pain inhibitory system elaborating postictal antinociceptive processes: a functional neuroanatomical and neuropharmacological study. Freitas RL; Ferreira CM; Ribeiro SJ; Carvalho AD; Elias-Filho DH; Garcia-Cairasco N; Coimbra NC Exp Neurol; 2005 Feb; 191(2):225-42. PubMed ID: 15649478 [TBL] [Abstract][Full Text] [Related]
16. Involvement of medullary GABAergic and serotonergic raphe neurons in respiratory control: electrophysiological and immunohistochemical studies in rats. Cao Y; Matsuyama K; Fujito Y; Aoki M Neurosci Res; 2006 Nov; 56(3):322-31. PubMed ID: 16962678 [TBL] [Abstract][Full Text] [Related]
17. Effect of morphine injectedin periadueductal gray on the activity of single units in nucleus raphe magnus of the rat. Behbehani MM; Pomeroy SL Brain Res; 1978 Jun; 149(1):266-9. PubMed ID: 207397 [No Abstract] [Full Text] [Related]
18. Modulation of the activity of central serotoninergic neurons by novel serotonin1A receptor agonists and antagonists: a comparison to adrenergic and dopaminergic neurons in rats. Gobert A; Lejeune F; Rivet JM; Audinot V; Newman-Tancredi A; Millan MJ J Pharmacol Exp Ther; 1995 Jun; 273(3):1032-46. PubMed ID: 7791073 [TBL] [Abstract][Full Text] [Related]
19. Role of neurotensin in the nucleus raphe magnus in opioid-induced antinociception from the periaqueductal gray. Urban MO; Smith DJ J Pharmacol Exp Ther; 1993 May; 265(2):580-6. PubMed ID: 8496808 [TBL] [Abstract][Full Text] [Related]
20. [The effect of microinjections of vasopressin into the inhibitory centers of the brain stem on rat behavior]. Verevkina SV Fiziol Zh SSSR Im I M Sechenova; 1991 Aug; 77(8):33-8. PubMed ID: 1668583 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]