BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 7057455)

  • 1. The external anion binding site of the human erythrocyte anion transporter: DNDS binding and competition with chloride.
    Fröhlich O
    J Membr Biol; 1982; 65(1-2):111-23. PubMed ID: 7057455
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chloride net efflux from intact erythrocytes under slippage conditions. Evidence for a positive charge on the anion binding/transport site.
    Fröhlich O; Leibson C; Gunn RB
    J Gen Physiol; 1983 Jan; 81(1):127-52. PubMed ID: 6833995
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glycine transport by human red blood cells and ghosts: evidence for glycine anion and proton cotransport by band 3.
    King PA; Gunn RB
    Am J Physiol; 1991 Nov; 261(5 Pt 1):C814-21. PubMed ID: 1659210
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anion transport in red blood cells. III. Sites and sidedness of inhibition by high-affinity reversible binding probes.
    Barzilay M; Cabantchik ZI
    Membr Biochem; 1979; 2(3-4):297-322. PubMed ID: 514089
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inverse effects of dansylation of red blood cell membrane on band 3 protein-mediated transport of sulphate and chloride.
    Lepke S; Passow H
    J Physiol; 1982 Jul; 328():27-48. PubMed ID: 6897945
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transmembrane effects of intracellular chloride on the inhibitory potency of extracellular H2DIDS. Evidence for two conformations of the transport site of the human erythrocyte anion exchange protein.
    Furuya W; Tarshis T; Law FY; Knauf PA
    J Gen Physiol; 1984 May; 83(5):657-81. PubMed ID: 6736915
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of external pH on binding of external sulfate, 4.4-dinitro-stilbene-2,2'-disulfonate (DNDS), and chloride to the band 3 anion exchange protein.
    Liu SQ; Ries E; Knauf PA
    J Gen Physiol; 1996 Feb; 107(2):293-306. PubMed ID: 8833347
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comparison of the inhibitory potency of reversibly acting inhibitors of anion transport on chloride and sulfate movements across the human red cell membrane.
    Ku CP; Jennings ML; Passow H
    Biochim Biophys Acta; 1979 May; 553(1):132-41. PubMed ID: 454583
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interactions of inhibitors on anion transporter of human erythrocyte.
    Fröhlich O; Gunn RB
    Am J Physiol; 1987 Feb; 252(2 Pt 1):C153-62. PubMed ID: 3826335
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Location of the stilbenedisulfonate binding site of the human erythrocyte anion-exchange system by resonance energy transfer.
    Rao A; Martin P; Reithmeier RA; Cantley LC
    Biochemistry; 1979 Oct; 18(21):4505-16. PubMed ID: 497152
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetics of reversible DIDS inhibition of chloride self exchange in human erythrocytes.
    Janas T; Bjerrum PJ; Brahm J; Wieth JO
    Am J Physiol; 1989 Oct; 257(4 Pt 1):C601-6. PubMed ID: 2801916
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Trapping of inhibitor-induced conformational changes in the erythrocyte membrane anion exchanger AE1.
    Tang XB; Casey JR
    Biochemistry; 1999 Nov; 38(44):14565-72. PubMed ID: 10545179
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The mechanism of anion transport across human red blood cell membranes as revealed with a fluorescent substrate: II. Kinetic properties of NBD-taurine transfer in asymmetric conditions.
    Eidelman O; Cabantchik ZI
    J Membr Biol; 1983; 71(1-2):149-61. PubMed ID: 6834420
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selective phenylglyoxalation of functionally essential arginyl residues in the erythrocyte anion transport protein.
    Bjerrum PJ; Wieth JO; Borders CL
    J Gen Physiol; 1983 Apr; 81(4):453-84. PubMed ID: 6854266
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anion transport in red blood cells. II. Kinetics of reversible inhibition by nitroaromatic sulfonic acids.
    Barzilay M; Cabantchik ZI
    Membr Biochem; 1979; 2(2):255-81. PubMed ID: 229385
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibition of the phosphate self-exchange flux in human erythrocytes and erythrocyte ghosts.
    Stadler F; Schnell KF
    J Membr Biol; 1990 Oct; 118(1):19-47. PubMed ID: 2283679
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The human erythrocyte anion transport protein, band 3. Characterization of exofacial alkaline titratable groups involved in anion binding/translocation.
    Bjerrum PJ
    J Gen Physiol; 1992 Aug; 100(2):301-39. PubMed ID: 1402784
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Asymmetry in the mechanism for anion exchange in human red blood cell membranes. Evidence for reciprocating sites that react with one transported anion at a time.
    Gunn RB; Fröhlich O
    J Gen Physiol; 1979 Sep; 74(3):351-74. PubMed ID: 479826
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bicarbonate exchange through the human red cell membrane determined with [14C] bicarbonate.
    Wieth JO
    J Physiol; 1979 Sep; 294():521-39. PubMed ID: 512956
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetics and mechanism of erythrocyte anion exchange.
    Salhany JM; Rauenbuehler PB
    J Biol Chem; 1983 Jan; 258(1):245-9. PubMed ID: 6848499
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.