These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 7057675)

  • 1. Recording of spontaneous activity with photoetched microelectrode surfaces from mouse spinal neurons in culture.
    Gross GW; Williams AN; Lucas JH
    J Neurosci Methods; 1982 Jan; 5(1-2):13-22. PubMed ID: 7057675
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transparent indium-tin oxide electrode patterns for extracellular, multisite recording in neuronal cultures.
    Gross GW; Wen WY; Lin JW
    J Neurosci Methods; 1985; 15(3):243-52. PubMed ID: 4094480
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A shielded microelectrode suitable for single-electrode voltage clamping of neurones in the CNS.
    Finkel AS; Redman S
    J Neurosci Methods; 1983 Sep; 9(1):23-9. PubMed ID: 6632959
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recording action potentials from cultured neurons with extracellular microcircuit electrodes.
    Pine J
    J Neurosci Methods; 1980 Feb; 2(1):19-31. PubMed ID: 7329089
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unit activity, evoked potentials and slow waves in the rat hippocampus and olfactory bulb recorded with a 24-channel microelectrode.
    Kuperstein M; Eichenbaum H
    Neuroscience; 1985 Jul; 15(3):703-12. PubMed ID: 4069353
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Description and demonstration of a CMOS amplifier-based-system with measurement and stimulation capability for bioelectrical signal transduction.
    Pancrazio JJ; Bey PP; Loloee A; Manne S; Chao HC; Howard LL; Gosney WM; Borkholder DA; Kovacs GT; Manos P; Cuttino DS; Stenger DA
    Biosens Bioelectron; 1998 Oct; 13(9):971-9. PubMed ID: 9839386
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of rat spinal cord neurons cultured in defined media on microelectrode arrays.
    Manos P; Pancrazio JJ; Coulombe MG; Ma W; Stenger DA
    Neurosci Lett; 1999 Aug; 271(3):179-82. PubMed ID: 10507698
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simultaneous single unit recording in vitro with a photoetched laser deinsulated gold multimicroelectrode surface.
    Gross GW
    IEEE Trans Biomed Eng; 1979 May; 26(5):273-9. PubMed ID: 447356
    [No Abstract]   [Full Text] [Related]  

  • 9. Multielectrode culture chamber: a device for long-term recording of bioelectric activities in vitro.
    Jánossy V; Tóth A; Bodocs L; Imrik P; Madarász E; Gyévai A
    Acta Biol Hung; 1990; 41(4):309-20. PubMed ID: 2131707
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stimulation of monolayer networks in culture through thin-film indium-tin oxide recording electrodes.
    Gross GW; Rhoades BK; Reust DL; Schwalm FU
    J Neurosci Methods; 1993 Nov; 50(2):131-43. PubMed ID: 8107494
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Instrumentation to evaluate neural signal recording properties of micromachined microelectrodes inserted in invertebrate nerve.
    Banks DJ; Balachandran W; Richards PR; Ewins D
    Physiol Meas; 2002 May; 23(2):437-48. PubMed ID: 12051313
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A CMOS-based microelectrode array for interaction with neuronal cultures.
    Hafizovic S; Heer F; Ugniwenko T; Frey U; Blau A; Ziegler C; Hierlemann A
    J Neurosci Methods; 2007 Aug; 164(1):93-106. PubMed ID: 17540452
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carbon fibre microelectrodes.
    Armstrong-James M; Millar J
    J Neurosci Methods; 1979 Oct; 1(3):279-87. PubMed ID: 544972
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiple actions of phenytoin on mouse spinal cord neurons in cell culture.
    McLean MJ; Macdonald RL
    J Pharmacol Exp Ther; 1983 Dec; 227(3):779-89. PubMed ID: 6317847
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-resolution intracellular recordings using a real-time computational model of the electrode.
    Brette R; Piwkowska Z; Monier C; Rudolph-Lilith M; Fournier J; Levy M; Frégnac Y; Bal T; Destexhe A
    Neuron; 2008 Aug; 59(3):379-91. PubMed ID: 18701064
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of the single microelectrode current and voltage clamp for central nervous system neurons.
    Dunn PF; Wilson WA
    Electroencephalogr Clin Neurophysiol; 1977 Nov; 43(5):752-6. PubMed ID: 72656
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Auditory cortical neurons in vitro: cell culture and multichannel extracellular recording.
    Gopal KV; Gross GW
    Acta Otolaryngol; 1996 Sep; 116(5):690-6. PubMed ID: 8908244
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Toward a comparison of microelectrodes for acute and chronic recordings.
    Ward MP; Rajdev P; Ellison C; Irazoqui PP
    Brain Res; 2009 Jul; 1282():183-200. PubMed ID: 19486899
    [TBL] [Abstract][Full Text] [Related]  

  • 19. BioMEA: a versatile high-density 3D microelectrode array system using integrated electronics.
    Charvet G; Rousseau L; Billoint O; Gharbi S; Rostaing JP; Joucla S; Trevisiol M; Bourgerette A; Chauvet P; Moulin C; Goy F; Mercier B; Colin M; Spirkovitch S; Fanet H; Meyrand P; Guillemaud R; Yvert B
    Biosens Bioelectron; 2010 Apr; 25(8):1889-96. PubMed ID: 20106652
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Floating microelectrode for recording the spike activity of the cerebral neurons of homeothermic animals].
    Butukhanov VV; Stepanov II; Gevorgian EG
    Fiziol Zh SSSR Im I M Sechenova; 1981 May; 67(5):764-7. PubMed ID: 7286311
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.