These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 7057804)

  • 1. Changes in the forms of the components of the troponin complex during regeneration of injured skeletal muscle.
    Dhoot GK; Perry SV
    Muscle Nerve; 1982 Jan; 5(1):39-47. PubMed ID: 7057804
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Satellite cells in slow and fast rat muscles differ in respect to acetylcholinesterase regulation mechanisms they convey to their descendant myofibers during regeneration.
    Dolenc I; Crne-Finderle N; Erzen I; Sketelj J
    J Neurosci Res; 1994 Feb; 37(2):236-46. PubMed ID: 8151731
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Myosin heavy chain expression in skeletal muscle autografts under neural or aneural conditions.
    Yoshimura K; Kuzon WM; Harii K
    J Surg Res; 1998 Mar; 75(2):135-47. PubMed ID: 9655086
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of denervation at birth on the development of skeletal muscle cell types in the rat.
    Dhoot GK; Perry SV
    Exp Neurol; 1983 Oct; 82(1):131-42. PubMed ID: 6628604
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Troponin isoform dependent pH dependence of the Ca(2+)-activated myofibrillar ATPase activity of avian slow and fast skeletal muscles.
    Kawashima A; Morimoto S; Suzuki A; Shiraishi F; Ohtsuki I
    Biochem Biophys Res Commun; 1995 Feb; 207(2):585-92. PubMed ID: 7864847
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regeneration in denervated toad (Bufo viridis) gastrocnemius muscle and the promotion of the process by low energy laser irradiation.
    Bibikova A; Oron U
    Anat Rec; 1995 Jan; 241(1):123-8. PubMed ID: 7879917
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Long-term retention of regenerative capability after denervation of skeletal muscle, and dependency of late differentiation on innervation.
    Gulati AK
    Anat Rec; 1988 Apr; 220(4):429-34. PubMed ID: 3382033
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Expression pattern of M-cadherin in normal, denervated, and regenerating mouse muscles.
    Irintchev A; Zeschnigk M; Starzinski-Powitz A; Wernig A
    Dev Dyn; 1994 Apr; 199(4):326-37. PubMed ID: 8075434
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coexistence of fast-muscle-type and slow-muscle-type troponin T isoforms in single chimeric muscle fibers induced by muscle transplantation.
    Yao Y; Miyazaki JI; Hirabayashi T
    Exp Cell Res; 1994 Sep; 214(1):400-7. PubMed ID: 8082743
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coexistence of slow and fast isoforms of contractile and regulatory proteins in human skeletal muscle fibres induced by endurance training.
    Schantz PG; Dhoot GK
    Acta Physiol Scand; 1987 Sep; 131(1):147-54. PubMed ID: 2960127
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Troponin and dystrophin in regenerating muscle fibers with and without denervation.
    Komiyama M; Toyota N; Shimada Y
    Muscle Nerve; 1994 Sep; 17(9):1062-4. PubMed ID: 8065394
    [No Abstract]   [Full Text] [Related]  

  • 12. Changes in some troponin and insulin-like growth factor messenger ribonucleic acids in regenerating and denervated skeletal muscles.
    Krishan K; Dhoot GK
    J Muscle Res Cell Motil; 1996 Oct; 17(5):513-21. PubMed ID: 8906619
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Imaging transcription in vivo: distinct regulatory effects of fast and slow activity patterns on promoter elements from vertebrate troponin I isoform genes.
    Rana ZA; Gundersen K; Buonanno A; Vullhorst D
    J Physiol; 2005 Feb; 562(Pt 3):815-28. PubMed ID: 15528243
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ca(2+)- and Sr(2+)-sensitive ATPase activity of slow skeletal myofibrils in comparison with fast skeletal and cardiac myofibrils.
    Kambara M
    Fukuoka Igaku Zasshi; 1994 Jan; 85(1):5-13. PubMed ID: 8163263
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of denervation on the content of cardiac troponin-T and cardiac troponin-I in rat skeletal muscle.
    Fredericks S; Degens H; McKoy G; Bainbridge K; Collinson PO; Coulton G; Elmahdi H; Holt DW
    Clin Biochem; 2007 Mar; 40(5-6):423-6. PubMed ID: 17303103
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pattern of skeletal muscle regeneration after reautotransplantation of regenerated muscle.
    Gulati AK
    J Embryol Exp Morphol; 1986 Mar; 92():1-10. PubMed ID: 3723055
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differentiation of original and regenerated skeletal muscle fibres in mdx dystrophic muscles.
    Earnshaw JC; Kyprianou P; Krishan K; Dhoot GK
    Histochem Cell Biol; 2002 Jul; 118(1):19-27. PubMed ID: 12122443
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential expression of ventricular-like myosin heavy chain mRNA in developing and regenerating avian skeletal muscles.
    Camoretti-Mercado B; Dizon E; Jakovcic S; Zak R
    Cell Mol Biol Res; 1993; 39(5):425-37. PubMed ID: 8173588
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Immunochemical analysis of troponin T isoforms in adult, embryonic, regenerating, and denervated chicken fast skeletal muscles.
    Shimizu N; Shimada Y
    Dev Biol; 1985 Oct; 111(2):324-34. PubMed ID: 3899776
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nerve-dependent and -independent patterns of mRNA expression in regenerating skeletal muscle.
    Esser K; Gunning P; Hardeman E
    Dev Biol; 1993 Sep; 159(1):173-83. PubMed ID: 8365559
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.