These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 7057874)

  • 1. Significance of the potassium signal from neurones to glial cells.
    Pentreath VW; Kai-Kai MA
    Nature; 1982 Jan; 295(5844):59-61. PubMed ID: 7057874
    [No Abstract]   [Full Text] [Related]  

  • 2. Single-channel and whole-cell recordings from on-neurone glial cells in Helix pomatia ganglia.
    Gommerat I; Jacquet G; Chagneux H; Gola M
    J Neurosci Methods; 1993 Nov; 50(2):243-51. PubMed ID: 8107504
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Changes in extracellular potassium concentration produced by neuronal activity in the central nervous system of the leech.
    Baylor DA; Nicholls JG
    J Physiol; 1969 Aug; 203(3):555-69. PubMed ID: 5387026
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High resolution analysis of [3H]2-deoxyglucose incorporation into neurons and glial cells in invertebrate ganglia: histological processing of nervous tissue for selective marking of glycogen.
    Kai Kai MA; Pentreath VW
    J Neurocytol; 1981 Aug; 10(4):693-708. PubMed ID: 7310471
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct effects of carbachol on membrane potential and ion activities in leech glial cells.
    Ballanyi K; Schlue WR
    Glia; 1988; 1(2):165-7. PubMed ID: 2976036
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrophysiological recordings of changes in relative cell volume of neurones, glia, and muscle cells.
    Ballanyi K; Serve G; Endres W; Strupp M; Grafe P
    Acta Physiol Scand Suppl; 1989; 582():25. PubMed ID: 2816429
    [No Abstract]   [Full Text] [Related]  

  • 7. Do neuronal signals regulate potassium flow in glial cells? Evidence from an invertebrate central nervous system.
    Walz W
    J Neurosci Res; 1982; 7(1):71-9. PubMed ID: 7069800
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ionic mechanism of a hyperpolarizing 5-hydroxytryptamine effect on leech neuropile glial cells.
    Walz W; Schlue WR
    Brain Res; 1982 Oct; 250(1):111-21. PubMed ID: 7139311
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glutaminergic responses of neuropile glial cells and Retzius neurones in the leech central nervous system.
    Dörner R; Ballanyi K; Schlue WR
    Brain Res; 1990 Jul; 523(1):111-6. PubMed ID: 2169963
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Slow changes in the membrane potentials of glial cells and neurons following nerve impulses.
    Nicholls JG
    Electroencephalogr Clin Neurophysiol; 1969 Sep; 27(7):702. PubMed ID: 4187398
    [No Abstract]   [Full Text] [Related]  

  • 11. The Na+-K+ pump in neuropile glial cells of the medicinal leech.
    Walz W; Wuttke W; Schlue WR
    Brain Res; 1983 May; 267(1):93-100. PubMed ID: 6305456
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Potassium activity in leech neuropile glial cells changes with external potassium concentration.
    Schlue WR; Wuttke W
    Brain Res; 1983 Jul; 270(2):368-72. PubMed ID: 6883105
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Method of determination of the potassium conductance during activity. Neuron of Helix pomatia].
    Fayolle R; Gola M
    C R Seances Soc Biol Fil; 1974; 168(8-9):994-1001. PubMed ID: 4282348
    [No Abstract]   [Full Text] [Related]  

  • 14. Quantitative analysis of neuron-glial relationships in the buccal ganglion of Planorbis: life constancy in the absence of changes in functional output.
    Radojcic T; Pentreath VW
    Brain Res; 1981 May; 211(2):468-75. PubMed ID: 7237137
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Potassium activity and changes in glial and neuronal membrane potentials during initiation and spread of afterdischarge in cerebral cortex of cat.
    Greenwood RS; Takato M; Goldring S
    Brain Res; 1981 Aug; 218(1-2):279-98. PubMed ID: 7272737
    [No Abstract]   [Full Text] [Related]  

  • 16. Glial signalling in response to neuronal activity in the leech central nervous system.
    Deitmer JW; Lohr C; Britz FC; Schmidt J
    Prog Brain Res; 2001; 132():215-26. PubMed ID: 11544990
    [No Abstract]   [Full Text] [Related]  

  • 17. [Physicochemical and metabolic components of intracellular resting potentials of identified A and B neurons in the mollusk Coretus corneus during changes in the concentration of potassium ions in the medium].
    Sologub MI; el-Sayed EM
    Fiziol Zh SSSR Im I M Sechenova; 1974 Aug; 60(8):1180-5. PubMed ID: 4426434
    [No Abstract]   [Full Text] [Related]  

  • 18. Preferential uptake of rubidium from extracellular space by glial cells compared to neurons in leech ganglia.
    Saubermann AJ; Castiglia CM; Foster MC
    Brain Res; 1992 Apr; 577(1):64-72. PubMed ID: 1521148
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Patch-clamp study of neurons and glial cells in isolated myenteric ganglia.
    Hanani M; Francke M; Härtig W; Grosche J; Reichenbach A; Pannicke T
    Am J Physiol Gastrointest Liver Physiol; 2000 Apr; 278(4):G644-51. PubMed ID: 10762619
    [TBL] [Abstract][Full Text] [Related]  

  • 20. After-effects of nerve impulses on signalling in the central nervous system of the leech.
    Baylor DA; Nicholls JG
    J Physiol; 1969 Aug; 203(3):571-89. PubMed ID: 5387027
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.