These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 7057918)

  • 1. Mitochondrial transformation of mammalian cells.
    Clark MA; Shay JW
    Nature; 1982 Feb; 295(5850):605-7. PubMed ID: 7057918
    [No Abstract]   [Full Text] [Related]  

  • 2. Use of isolated mitochondria to transfer chloramphenicol resistance in hamster cells.
    Ber R; Stauver MG; Shay JW
    Isr J Med Sci; 1984 Mar; 20(3):244-8. PubMed ID: 6724871
    [No Abstract]   [Full Text] [Related]  

  • 3. Chloramphenicol-induced mitochondrial dysfunction is associated with decreased transferrin receptor expression and ferritin synthesis in K562 cells and is unrelated to IRE-IRP interactions.
    Leiter LM; Thatte HS; Okafor C; Marks PW; Golan DE; Bridges KR
    J Cell Physiol; 1999 Sep; 180(3):334-44. PubMed ID: 10430173
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The interference of the macrolide antibiotics with mitochondrial protein synthesis.
    de Vries H; Arendzen AJ; Kroon AM
    Biochim Biophys Acta; 1973 Dec; 331(2):264-75. PubMed ID: 4272715
    [No Abstract]   [Full Text] [Related]  

  • 5. Effect of mitochondrial dosage on transfer of chloramphenicol resistance.
    Walker C; Shay JW
    Somatic Cell Genet; 1983 Jul; 9(4):469-76. PubMed ID: 6623309
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Studies of heterogeneous mitochondrial populations in a mouse cell line: the effects of selection for or against mitochondrial genomes that confer chloramphenicol resistance.
    Kearsey SE; Munro E; Craig IW
    Proc R Soc Lond B Biol Sci; 1985 May; 224(1236):315-23. PubMed ID: 2862632
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transformation of cultured cells to chloramphenicol resistance by purified mammalian mitochondrial DNA.
    Coon HG; Ho C
    Brookhaven Symp Biol; 1977 May 12-20; (29):166-77. PubMed ID: 754863
    [No Abstract]   [Full Text] [Related]  

  • 8. Selection of mammalian cells resistant to a chloramphenicol analog.
    Wallace RB; Freeman KB
    J Cell Biol; 1975 May; 65(2):492-8. PubMed ID: 1168651
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibition of mammalian mitochondrial protein synthesis by oxazolidinones.
    McKee EE; Ferguson M; Bentley AT; Marks TA
    Antimicrob Agents Chemother; 2006 Jun; 50(6):2042-9. PubMed ID: 16723564
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Altered ribosomal RNA genes in mitochondria from mammalian cells with chloramphenicol resistance.
    Kearsey SE; Craig IW
    Nature; 1981 Apr; 290(5807):607-8. PubMed ID: 7219548
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative metabolic effects of chloramphenicol and thiamphenicol in mammalian cells.
    Yunis AA; Manyan DR; Arimura GK
    Postgrad Med J; 1974 Oct; 50 Suppl 5(579):60-5. PubMed ID: 4470821
    [No Abstract]   [Full Text] [Related]  

  • 12. Mitochondrial biogenesis in cultured animal cells. I. Effect of chloramphenicol on morphology and mitochondrial respiratory enzymes.
    Lipton JH; McMurray WC
    Biochim Biophys Acta; 1977 Aug; 477(3):264-72. PubMed ID: 195616
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mitochondrial biogenesis in cultured mammalian cells. III. Synthesis of mitochondrial phospholipids by subcellular fractions isolated from normal and chloramphenicol-treated BHK-21 cells.
    Lipton JH; McMurray WC
    Biochim Biophys Acta; 1977 Feb; 486(2):228-42. PubMed ID: 836855
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biogenesis of mitochondria. 18. A new class of cytoplasmically determined antibiotic resistant mutants in Saccharomyces cerevisiae.
    Bunn CL; Mitchell CH; Lukins HB; Linnane AW
    Proc Natl Acad Sci U S A; 1970 Nov; 67(3):1233-40. PubMed ID: 5274452
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antibiotics: a tool in the search for the degree of autonomy of mitochondria in higher animals.
    Kroon AM; de Vries H
    Symp Soc Exp Biol; 1970; 24():181-99. PubMed ID: 5516337
    [No Abstract]   [Full Text] [Related]  

  • 16. Susceptibility of 55S mitochondrial ribosomes to antibiotics inhibitory to prokaryotic ribosomes, lincomycin, chloramphenicol and PA114A.
    Denslow ND; O'Brien TW
    Biochem Biophys Res Commun; 1974 Mar; 57(1):9-16. PubMed ID: 4597411
    [No Abstract]   [Full Text] [Related]  

  • 17. Comparative effect of chloramphenicol and thiamphenicol on DNA and mitochondrial protein synthesis in mammalian cells.
    Yunis AA; Manyan DR; Arimura GK
    J Lab Clin Med; 1973 May; 81(5):713-8. PubMed ID: 4698658
    [No Abstract]   [Full Text] [Related]  

  • 18. [The functioning of mammalian mitochondria injected into fish embryos].
    Abramova NB; Bueverova EI; NeÄ­fakh AA
    Ontogenez; 1989; 20(3):320-3. PubMed ID: 2549481
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mitochondrial biogenesis in cultured mammalian cells. II. Mitochondrial protein and phospholipid synthesis in chloramphenicol-treated BHK-21 cells.
    Lipton JH; McMurray WC
    Biochim Biophys Acta; 1977 Aug; 477(3):273-87. PubMed ID: 884116
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Toward genetic transformation of mitochondria in mammalian cells using a recoded drug-resistant selection marker.
    Yoon YG; Koob MD
    J Genet Genomics; 2011 Apr; 38(4):173-9. PubMed ID: 21530901
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.