These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 7057919)

  • 1. Release of spectrin-free spicules on reoxygenation of sickled erythrocytes.
    Allan D; Limbrick AR; Thomas P; Westerman MP
    Nature; 1982 Feb; 295(5850):612-3. PubMed ID: 7057919
    [No Abstract]   [Full Text] [Related]  

  • 2. Uncoupling of the spectrin-based skeleton from the lipid bilayer in sickled red cells.
    Liu SC; Derick LH; Zhai S; Palek J
    Science; 1991 Apr; 252(5005):574-6. PubMed ID: 2020854
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Defined rearrangement of the membrane of banked erythrocytes.
    Halbhuber KJ; Stibenz D; Feuerstein H; Linss W; Meyer HW; Fröber R; Rumpel E; Geyer G
    Acta Biol Med Ger; 1981; 40(4-5):419-21. PubMed ID: 7315091
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Membrane protein organization in ATP-depleted and irreversibly sickled red cells.
    Palek J; Liu SC
    J Supramol Struct; 1979; 10(1):79-96. PubMed ID: 108478
    [No Abstract]   [Full Text] [Related]  

  • 5. Sickling of sickle erythrocytes does not alter phospholipid asymmetry.
    Raval PJ; Allan D
    Biochem J; 1984 Oct; 223(2):555-7. PubMed ID: 6497863
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Abnormal membrane phospholipid asymmetry in sickle erythrocytes and its pathophysiologic significance.
    Lubin B; Chiu D; Roelofsen B; Van Deenen LL
    Prog Clin Biol Res; 1981; 56():171-93. PubMed ID: 7330009
    [No Abstract]   [Full Text] [Related]  

  • 7. Sickled erythrocytes: a model to study the stabilization of the phospholipid bilayer in the red cell membrane.
    Roelofsen B; Franck PF; Chiu DT; Lubin B; Van Deenen LL; Op den Kamp JA
    Biomed Biochim Acta; 1983; 42(11-12):S22-6. PubMed ID: 6675694
    [No Abstract]   [Full Text] [Related]  

  • 8. Membrane components in the red cells of patients with sickle cell anemia. Relationship to cell aging and to irreversibility of sickling.
    Westerman MP; Diloy-Puray M; Streczyn M
    Biochim Biophys Acta; 1979 Oct; 557(1):149-55. PubMed ID: 549632
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Membrane and endoskeletal defects in HbSS erythrocytes.
    Wallach DF
    Prog Clin Biol Res; 1981; 51():333-53. PubMed ID: 7022474
    [No Abstract]   [Full Text] [Related]  

  • 10. Red blood cell [14C]cholesterol exchange and plasma cholesterol esterifying activity of normal and sickle cell blood.
    Jain SK; Shohet SB
    Biochim Biophys Acta; 1982 May; 688(1):11-5. PubMed ID: 7093267
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Uncoupling of the membrane skeleton from the lipid bilayer. The cause of accelerated phospholipid flip-flop leading to an enhanced procoagulant activity of sickled cells.
    Franck PF; Bevers EM; Lubin BH; Comfurius P; Chiu DT; Op den Kamp JA; Zwaal RF; van Deenen LL; Roelofsen B
    J Clin Invest; 1985 Jan; 75(1):183-90. PubMed ID: 3965502
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Release of spectrin-free vesicles from human erythrocytes during ATP depletion. I. Characterization of spectrin-free vesicles.
    Lutz HU; Liu SC; Palek J
    J Cell Biol; 1977 Jun; 73(3):548-60. PubMed ID: 873988
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-voltage electron microscopy of normal and irreversibly sickled red blood cells.
    Wise GE; Miller E; Castello CM
    Cell Tissue Res; 1981; 214(1):129-36. PubMed ID: 7471169
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Abnormalities in membrane phospholipid organization in sickled erythrocytes.
    Lubin B; Chiu D; Bastacky J; Roelofsen B; Van Deenen LL
    J Clin Invest; 1981 Jun; 67(6):1643-9. PubMed ID: 7240412
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Organizational differences in the membrane proteins of normal and irreversibly sickled erythrocytes.
    Rubin RW; Milikowski C; Wise GE
    Biochim Biophys Acta; 1980; 595(1):1-8. PubMed ID: 7349873
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pathology of membrane proteins in sickle erythrocytes.
    Platt OS
    Ann N Y Acad Sci; 1989; 565():83-5. PubMed ID: 2528313
    [No Abstract]   [Full Text] [Related]  

  • 17. Erythrocyte membrane vesicles and irreversibly sickled cells bind protein S.
    Lane PA; O'Connell JL; Marlar RA
    Am J Hematol; 1994 Dec; 47(4):295-300. PubMed ID: 7977302
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Erythrocyte membrane lipid reorganization during the sickling process.
    Chiu D; Lubin B; Shohet SB
    Br J Haematol; 1979 Feb; 41(2):223-34. PubMed ID: 427032
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of dimyristoyl phosphatidylcholine on intact erythrocytes. Release of spectrin-free vesicles without ATP depletion.
    Ott P; Hope MJ; Verkleij AJ; Roelofsen B; Brodbeck U; van Deenen LL
    Biochim Biophys Acta; 1981 Feb; 641(1):79-87. PubMed ID: 7213719
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relationship between erythrocyte lipid content and cell volume: regression equations for comparing normal and sickle cell populations.
    Brownlee NR; Long LC; Balcerzak SP; Bromberg PA; Mills RL; Cornwell DG
    Physiol Chem Phys; 1974; 6(6):479-87. PubMed ID: 4460062
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.