These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
82 related articles for article (PubMed ID: 7059571)
1. Fluorometric studies on the binding of gluconolactone, glucose, and glucosides to the subsites of glucoamylase. Hiromi K; Tanaka A; Ohnishi M Biochemistry; 1982 Jan; 21(1):102-7. PubMed ID: 7059571 [No Abstract] [Full Text] [Related]
2. Static and kinetic studies on the binding of Streptomyces trehalase inhibitor SGI with Rhizopus glucoamylase. Comparison with glucose and gluconolactone. Tanaka A; Ohnishi M; Hiromi K; Miyata S; Murao S J Biochem; 1982 Jan; 91(1):1-9. PubMed ID: 6461639 [No Abstract] [Full Text] [Related]
3. Stopped-flow kinetic studies on the binding of gluconolactone and maltose to glucoamylase. Tanaka A; Ohnishi M; Hiromi K Biochemistry; 1982 Jan; 21(1):107-13. PubMed ID: 7059572 [No Abstract] [Full Text] [Related]
4. Studies on the subsite structure of amylases. III. Inhibition by gluconolactone of the hydrolysis of maltodextrin catalyzed by glucoamylase from Rhizopus niveus. Ohnishi M; Yamashita T; Hiromi K J Biochem; 1976 May; 79(5):1007-12. PubMed ID: 956133 [TBL] [Abstract][Full Text] [Related]
5. Static and kinetic studies by fluorometry on the interaction between gluconolactone and glucoamylase from Rh. niveus. Ohnishi M; Yamashita T; Hiromi K J Biochem; 1977 Jan; 81(1):99-105. PubMed ID: 845140 [TBL] [Abstract][Full Text] [Related]
6. Studies on the subsite structure of amylases. I. Interaction of glucoamylase with substrate and analogues studied by difference-spectrophotometry. Onishi M; Kegai H; Hiromi K J Biochem; 1975 Apr; 77(4):695-703. PubMed ID: 1150637 [TBL] [Abstract][Full Text] [Related]
7. Subsite structure and ligand binding mechanism of glucoamylase. Hiromi K; Ohnishi M; Tanaka A Mol Cell Biochem; 1983; 51(1):79-95. PubMed ID: 6406831 [TBL] [Abstract][Full Text] [Related]
8. Equilibrium and kinetic studies on the binding of gluconolactone to almond beta-glucosidase in the absence and presence of glucose. Tanaka A; Ito M; Hiromi K J Biochem; 1986 Nov; 100(5):1379-85. PubMed ID: 3102466 [TBL] [Abstract][Full Text] [Related]
9. Proceedings: Movement of sugars between compartments of vascularly perfused intestine. Boyd CA; Parsons DS J Physiol; 1976 Jun; 258(1):12P-13P. PubMed ID: 940048 [No Abstract] [Full Text] [Related]
10. Characterization, by the binding of D-mannonolactone, of the subsites adjacent to the catalytic site of glucoamylase from Rhizopus niveus. Ohnishi M; French D Carbohydr Res; 1987 Jul; 165(1):155-60. PubMed ID: 3117364 [No Abstract] [Full Text] [Related]
11. A probable oxocarbonium ion in the reaction mechanism of small intestinal sucrase and isomaltase. Cogoli A; Semenza G J Biol Chem; 1975 Oct; 250(19):7802-9. PubMed ID: 1176448 [TBL] [Abstract][Full Text] [Related]
12. Steady-state inhibitory kinetic studies on the ligand binding modes of Aspergillus niger glucoamylase. Tanaka A; Ohya M; Yamamoto T; Nakagawa C; Tsuji T; Senoo K; Obata H Biosci Biotechnol Biochem; 1999 Sep; 63(9):1548-52. PubMed ID: 10540741 [TBL] [Abstract][Full Text] [Related]
13. Voltage-controlled enzyme-catalyzed glucose-gluconolactone conversion using a field-effect enzymatic detector. Yau ST; Xu Y; Song Y; Feng Y; Wang J Phys Chem Chem Phys; 2013 Dec; 15(46):20134-9. PubMed ID: 24158463 [TBL] [Abstract][Full Text] [Related]
14. Studies on the transport of aliphatic glucosides by hamster small intestine in vitro. Ramaswamy K; Bhattacharyya BR; Crane RK Biochim Biophys Acta; 1976 Apr; 433(1):32-8. PubMed ID: 1260062 [TBL] [Abstract][Full Text] [Related]
15. Steady-state kinetic and calorimetric studies on the binding of Aspergillus niger glucoamylase with gluconolactone, 1-deoxynojirimycin, and beta-cyclodextrin. Tanaka A Biosci Biotechnol Biochem; 1996 Dec; 60(12):2055-8. PubMed ID: 8988638 [TBL] [Abstract][Full Text] [Related]
16. Flavonoid glycosides are not transported by the human Na+/glucose transporter when expressed in Xenopus laevis oocytes, but effectively inhibit electrogenic glucose uptake. Kottra G; Daniel H J Pharmacol Exp Ther; 2007 Aug; 322(2):829-35. PubMed ID: 17495124 [TBL] [Abstract][Full Text] [Related]
17. Active-site binding of glycosides by Thermomonospora fusca endocellulase E2. Barr BK; Wolfgang DE; Piens K; Claeyssens M; Wilson DB Biochemistry; 1998 Jun; 37(26):9220-9. PubMed ID: 9649302 [TBL] [Abstract][Full Text] [Related]
18. C-terminus loop 13 of Na+ glucose cotransporter SGLT1 contains a binding site for alkyl glucosides. Raja MM; Kipp H; Kinne RK Biochemistry; 2004 Aug; 43(34):10944-51. PubMed ID: 15323554 [TBL] [Abstract][Full Text] [Related]
19. Purification and some properties of a beta-glucosidase from Trichoderma harzianum type C-4. Yun SI; Jeong CS; Chung DK; Choi HS Biosci Biotechnol Biochem; 2001 Sep; 65(9):2028-32. PubMed ID: 11676016 [TBL] [Abstract][Full Text] [Related]
20. Kinetic properties and mechanism of action of an intracellular beta-glucosidase from Thermoascus aurantiacus Miehe. Bedino S; Testore G; Obert F Ital J Biochem; 1986; 35(4):207-20. PubMed ID: 3781804 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]