These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

78 related articles for article (PubMed ID: 7059572)

  • 1. Stopped-flow kinetic studies on the binding of gluconolactone and maltose to glucoamylase.
    Tanaka A; Ohnishi M; Hiromi K
    Biochemistry; 1982 Jan; 21(1):107-13. PubMed ID: 7059572
    [No Abstract]   [Full Text] [Related]  

  • 2. Static and kinetic studies on the binding of Streptomyces trehalase inhibitor SGI with Rhizopus glucoamylase. Comparison with glucose and gluconolactone.
    Tanaka A; Ohnishi M; Hiromi K; Miyata S; Murao S
    J Biochem; 1982 Jan; 91(1):1-9. PubMed ID: 6461639
    [No Abstract]   [Full Text] [Related]  

  • 3. Static and kinetic studies by fluorometry on the interaction between gluconolactone and glucoamylase from Rh. niveus.
    Ohnishi M; Yamashita T; Hiromi K
    J Biochem; 1977 Jan; 81(1):99-105. PubMed ID: 845140
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluorometric studies on the binding of gluconolactone, glucose, and glucosides to the subsites of glucoamylase.
    Hiromi K; Tanaka A; Ohnishi M
    Biochemistry; 1982 Jan; 21(1):102-7. PubMed ID: 7059571
    [No Abstract]   [Full Text] [Related]  

  • 5. Stopped-flow fluorescence and steady-state kinetic studies of ligand-binding reactions of glucoamylase from Aspergillus niger.
    Olsen K; Svensson B; Christensen U
    Eur J Biochem; 1992 Oct; 209(2):777-84. PubMed ID: 1425682
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Studies on the subsite structure of amylases. I. Interaction of glucoamylase with substrate and analogues studied by difference-spectrophotometry.
    Onishi M; Kegai H; Hiromi K
    J Biochem; 1975 Apr; 77(4):695-703. PubMed ID: 1150637
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Equilibrium and kinetic studies on the binding of gluconolactone to almond beta-glucosidase in the absence and presence of glucose.
    Tanaka A; Ito M; Hiromi K
    J Biochem; 1986 Nov; 100(5):1379-85. PubMed ID: 3102466
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Studies on the subsite structure of amylases. III. Inhibition by gluconolactone of the hydrolysis of maltodextrin catalyzed by glucoamylase from Rhizopus niveus.
    Ohnishi M; Yamashita T; Hiromi K
    J Biochem; 1976 May; 79(5):1007-12. PubMed ID: 956133
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Steady-state kinetic and calorimetric studies on the binding of Aspergillus niger glucoamylase with gluconolactone, 1-deoxynojirimycin, and beta-cyclodextrin.
    Tanaka A
    Biosci Biotechnol Biochem; 1996 Dec; 60(12):2055-8. PubMed ID: 8988638
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Subsite structure and ligand binding mechanism of glucoamylase.
    Hiromi K; Ohnishi M; Tanaka A
    Mol Cell Biochem; 1983; 51(1):79-95. PubMed ID: 6406831
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Voltage-controlled enzyme-catalyzed glucose-gluconolactone conversion using a field-effect enzymatic detector.
    Yau ST; Xu Y; Song Y; Feng Y; Wang J
    Phys Chem Chem Phys; 2013 Dec; 15(46):20134-9. PubMed ID: 24158463
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changes in the fluorescence of bound nucleotide during the reaction catalysed by glucose-fructose oxidoreductase from Zymomonas mobilis.
    Hardman MJ; Tsao M; Scopes RK
    Eur J Biochem; 1992 Apr; 205(2):715-20. PubMed ID: 1572370
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Subsite affinities of glucoamylase: examination of the validity of the subsite theory.
    Hiromi K; Nitta Y; Numata C; Ono S
    Biochim Biophys Acta; 1973 Apr; 302(2):362-75. PubMed ID: 4699245
    [No Abstract]   [Full Text] [Related]  

  • 14. Steady-state and transient kinetic studies on the binding of maltooligosaccharides to glucoamylase.
    Tanaka A; Yamashita T; Ohnishi M; Hiromi K
    J Biochem; 1983 Apr; 93(4):1037-43. PubMed ID: 6408069
    [No Abstract]   [Full Text] [Related]  

  • 15. Catalytic properties of two Rhizopus oryzae 99-880 glucoamylase enzymes without starch binding domains expressed in Pichia pastoris.
    Mertens JA; Braker JD; Jordan DB
    Appl Biochem Biotechnol; 2010 Dec; 162(8):2197-213. PubMed ID: 20549574
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Studies on the subsite structure of amylases. IV. Tryptophan residues of glucoamylase from Rhizopus niveus studied by chemical modification with N-bromosuccinimide.
    Ohnishi M; Hiromi K
    J Biochem; 1976 Jan; 79(1):11-16. PubMed ID: 939754
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Steady-state inhibitory kinetic studies on the ligand binding modes of Aspergillus niger glucoamylase.
    Tanaka A; Ohya M; Yamamoto T; Nakagawa C; Tsuji T; Senoo K; Obata H
    Biosci Biotechnol Biochem; 1999 Sep; 63(9):1548-52. PubMed ID: 10540741
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetic studies on the chemical modification of lysozyme by N-bromosuccinimide and its protection by substrates and analogs.
    Hiromi K; Kawagishi T; Ohnishi M
    J Biochem; 1977 Jun; 81(6):1583-6. PubMed ID: 893364
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaction of wheat β-amylase with maltose and glucose as examined by fluorescence.
    Daba T; Kojima K; Inouye K
    J Biochem; 2013 Jul; 154(1):85-92. PubMed ID: 23596054
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glucosidase II from rat liver microsomes. Kinetic model for binding and hydrolysis.
    Alonso JM; Santa-Cecilia A; Calvo P
    Biochem J; 1991 Sep; 278 ( Pt 3)(Pt 3):721-7. PubMed ID: 1898361
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.