These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 7059587)

  • 1. Electro-osmosis at the surface of phospholipid bilayer membranes.
    Balasubramanian A; McLaughlin S
    Biochim Biophys Acta; 1982 Feb; 685(1):1-5. PubMed ID: 7059587
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential scanning calorimetric study of the effect of the antimicrobial peptide gramicidin S on the thermotropic phase behavior of phosphatidylcholine, phosphatidylethanolamine and phosphatidylglycerol lipid bilayer membranes.
    Prenner EJ; Lewis RN; Kondejewski LH; Hodges RS; McElhaney RN
    Biochim Biophys Acta; 1999 Mar; 1417(2):211-23. PubMed ID: 10082797
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Controlling two-dimensional tethered vesicle motion using an electric field: interplay of electrophoresis and electro-osmosis.
    Yoshina-Ishii C; Boxer SG
    Langmuir; 2006 Feb; 22(5):2384-91. PubMed ID: 16489833
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reconstituted human erythrocyte sugar transporter activity is determined by bilayer lipid head groups.
    Tefft RE; Carruthers A; Melchior DL
    Biochemistry; 1986 Jun; 25(12):3709-18. PubMed ID: 3718955
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Permeability of acetic acid across gel and liquid-crystalline lipid bilayers conforms to free-surface-area theory.
    Xiang TX; Anderson BD
    Biophys J; 1997 Jan; 72(1):223-37. PubMed ID: 8994607
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electric field-driven transformations of a supported model biological membrane--an electrochemical and neutron reflectivity study.
    Burgess I; Li M; Horswell SL; Szymanski G; Lipkowski J; Majewski J; Satija S
    Biophys J; 2004 Mar; 86(3):1763-76. PubMed ID: 14990503
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electro-osmosis and the reabsorption of fluid in renal proximal tubules.
    McLaughlin S; Mathias RT
    J Gen Physiol; 1985 May; 85(5):699-728. PubMed ID: 3998707
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Membrane insertion and lateral diffusion of fluorescence-labelled cytochrome c oxidase subunit IV signal peptide in charged and uncharged phospholipid bilayers.
    Frey S; Tamm LK
    Biochem J; 1990 Dec; 272(3):713-9. PubMed ID: 2176475
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lateral diffusivity of lipid analogue excimeric probes in dimyristoylphosphatidylcholine bilayers.
    Sassaroli M; Vauhkonen M; Perry D; Eisinger J
    Biophys J; 1990 Feb; 57(2):281-90. PubMed ID: 2317550
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temperature dependence of the surface topography in dimyristoylphosphatidylcholine/distearoylphosphatidylcholine multibilayers.
    Giocondi MC; Le Grimellec C
    Biophys J; 2004 Apr; 86(4):2218-30. PubMed ID: 15041661
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Morphological behavior of lipid bilayers induced by melittin near the phase transition temperature.
    Toraya S; Nagao T; Norisada K; Tuzi S; Saitô H; Izumi S; Naito A
    Biophys J; 2005 Nov; 89(5):3214-22. PubMed ID: 16113109
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein-catalyzed phospholipid exchange in bilayer vesicles determined by flow cytometry and electron microscopy.
    Xü YH; Rüppel D; Ziegler H; Hartmann W; Galla HJ
    Biochim Biophys Acta; 1982 Aug; 689(3):437-43. PubMed ID: 6897001
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of magnetically aligned phospholipid bilayers in mixtures of palmitoylstearoylphosphatidylcholine and dihexanoylphosphatidylcholine by solid-state NMR spectroscopy.
    Tiburu EK; Moton DM; Lorigan GA
    Biochim Biophys Acta; 2001 Jun; 1512(2):206-14. PubMed ID: 11406097
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Availability of dinitrophenylated lipid haptens for specific antibody binding depends on the physical properties of host bilayer membranes.
    Balakrishnan K; Mehdi SQ; McConnell HM
    J Biol Chem; 1982 Jun; 257(11):6434-9. PubMed ID: 7076676
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermodynamic stability and osmotic sensitivity of small unilamellar phosphatidylcholine vesicles.
    Lerebours B; Wehrli E; Hauser H
    Biochim Biophys Acta; 1993 Oct; 1152(1):49-60. PubMed ID: 8399305
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An experimental test of the discreteness-of-charge effect in positive and negative lipid bilayers.
    Winiski AP; McLaughlin AC; McDaniel RV; Eisenberg M; McLaughlin S
    Biochemistry; 1986 Dec; 25(25):8206-14. PubMed ID: 3814579
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calorimetric and spectroscopic studies of the phase behavior and organization of lipid bilayer model membranes composed of binary mixtures of dimyristoylphosphatidylcholine and dimyristoylphosphatidylglycerol.
    Lewis RN; Zhang YP; McElhaney RN
    Biochim Biophys Acta; 2005 Mar; 1668(2):203-14. PubMed ID: 15737331
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrasonic measurements of two-component lipid bilayer suspensions.
    Mitaku S; Okano K
    Biophys Chem; 1981 Oct; 14(2):147-58. PubMed ID: 6895704
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spectroelectrochemical studies of bilayers of phospholipids in gel and liquid state on Au(111) electrode surface.
    Zawisza I; Bin X; Lipkowski J
    Bioelectrochemistry; 2004 Jun; 63(1-2):137-47. PubMed ID: 15110264
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of (+)-totarol, a diterpenoid antibacterial agent, on phospholipid model membranes.
    Micol V; Mateo CR; Shapiro S; Aranda FJ; Villalaín J
    Biochim Biophys Acta; 2001 Apr; 1511(2):281-90. PubMed ID: 11286971
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.