These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 7059656)

  • 1. Comparative microcalorimetric dilatometric analysis of the interactions of quinacrine, chloroquine, and ethidium bromide with DNA.
    Delben F; Quadrifoglio F; Giancotti V; Crescenzi V
    Biopolymers; 1982 Feb; 21(2):331-41. PubMed ID: 7059656
    [No Abstract]   [Full Text] [Related]  

  • 2. Binding of ethidium bromide and quinacrine hydrochloride to nucleic acids and reconstituted nucleohistones.
    Chitre AV; Korgaonkar KS
    Biochem J; 1979 Apr; 179(1):213-9. PubMed ID: 475755
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quinacrine and ethidium bromide bind the same locus on the nicotinic acetylcholine receptor from Torpedo californica.
    Lurtz MM; Hareland ML; Pedersen SE
    Biochemistry; 1997 Feb; 36(8):2068-75. PubMed ID: 9047305
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Studies of interaction of emodin and DNA in the presence of ethidium bromide by spectroscopic method.
    Bi S; Zhang H; Qiao C; Sun Y; Liu C
    Spectrochim Acta A Mol Biomol Spectrosc; 2008 Jan; 69(1):123-9. PubMed ID: 17548242
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential binding of the enantiomers of chloroquine and quinacrine to polynucleotides: implications for stereoselective metabolism.
    Scaria PV; Craig JC; Shafer RH
    Biopolymers; 1993 Jun; 33(6):887-95. PubMed ID: 8318663
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of ionic strength on DNA-ligand unwinding angles for acridine and quinoline derivatives.
    Jones RL; Lanier AC; Keel RA; Wilson WD
    Nucleic Acids Res; 1980 Apr; 8(7):1613-24. PubMed ID: 7191995
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Study of interactions of anthraquinones with DNA using ethidium bromide as a fluorescence probe.
    Qiao C; Bi S; Sun Y; Song D; Zhang H; Zhou W
    Spectrochim Acta A Mol Biomol Spectrosc; 2008 Jun; 70(1):136-43. PubMed ID: 17825605
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nucleosome dynamics V. Ethidium bromide versus histone tails in modulating ethidium bromide-driven tetrasome chiral transition. A fluorescence study of tetrasomes on DNA minicircles.
    Sivolob A; Prunell A
    J Mol Biol; 2000 Jan; 295(1):41-53. PubMed ID: 10623507
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative viscometric analysis of the interaction of chloroquine and quinacrine with superhelical and sonicated DNA.
    Jones RL; Davidson MW; Wilson WD
    Biochim Biophys Acta; 1979 Jan; 561(1):77-84. PubMed ID: 420855
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative binding study of the interaction of quinacrine and ethidium bromide with DNA and nucleohistone.
    Bontemps J; Fredericq E
    Biophys Chem; 1974 Jun; 2(1):1-22. PubMed ID: 4412523
    [No Abstract]   [Full Text] [Related]  

  • 11. Influence of N-terminal hydrophobicity of cationic peptides on thermodynamics of their interaction with plasmid DNA.
    Goparaju GN; Bruist MF; Chandran CS; Gupta PK
    Chem Biol Drug Des; 2009 May; 73(5):502-10. PubMed ID: 19366359
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermodynamic characterization of ethidium bromide binding to a unique site on yeast tRNAphe.
    Sturgill TW
    Biopolymers; 1978 Jul; 17(7):1793-1810. PubMed ID: 352427
    [No Abstract]   [Full Text] [Related]  

  • 13. Influence of sucrose on chloroquine-3-H3 content of mammalian cells in vitro: the possible role of lysosomes in chloroquine resistance.
    Polet H
    J Pharmacol Exp Ther; 1970 May; 173(1):71-7. PubMed ID: 5462541
    [No Abstract]   [Full Text] [Related]  

  • 14. Interactions of nogalamycin & ethidium bromide with chromatin & DNA - histone (f1) complex.
    Chatterji H; Deb JK; Neogy RK
    Indian J Biochem Biophys; 1980 Dec; 17(6):421-3. PubMed ID: 7251027
    [No Abstract]   [Full Text] [Related]  

  • 15. Study of the DNA/ethidium bromide interactions on mica surface by atomic force microscope: influence of the surface friction.
    Pastré D; Piétrement O; Zozime A; Le Cam E
    Biopolymers; 2005 Jan; 77(1):53-62. PubMed ID: 15578645
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Heterogeneity of strong binding sites of ethidium bromide to DNA. fluorescing and nonfluorescing complexes].
    Borisova OF; Shchelkina AK; Karapetian AT; Surovaia AN
    Mol Biol (Mosk); 1998; 32(5):855-62. PubMed ID: 9914973
    [No Abstract]   [Full Text] [Related]  

  • 17. Differential pulse voltammetric studies of ethidium bromide binding to DNA.
    Minasyan SH; Tavadyan LA; Antonyan AP; Davtyan HG; Parsadanyan MA; Vardevanyan PO
    Bioelectrochemistry; 2006 Jan; 68(1):48-55. PubMed ID: 15914092
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antimalarial agents. Chloroquine, hydroxychloroquine, and quinacrine.
    Tanenbaum L; Tuffanelli DL
    Arch Dermatol; 1980 May; 116(5):587-91. PubMed ID: 6990871
    [No Abstract]   [Full Text] [Related]  

  • 19. Estimation of accessibility of DNA in chromatin from fluorescence measurements of electronic excitation energy transfer.
    Brodie S; Giron J; Latt SA
    Nature; 1975 Feb; 253(5491):470-1. PubMed ID: 1110800
    [No Abstract]   [Full Text] [Related]  

  • 20. 1H-NMR determination of the thermodynamics of drug complexation with single-stranded and double-stranded oligonucleotides in solution: ethidium bromide complexation with the deoxytetranucleotides 5'-d(ApCpGpT), 5'-d(ApGpCpT), and 5'-d(TpGpCpA).
    Davies DB; Djimant LN; Baranovsky SF; Veselkov AN
    Biopolymers; 1997 Sep; 42(3):285-95. PubMed ID: 9303681
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.