BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 7059804)

  • 1. Mechanisms of septal lamination in the developing hippocampus revealed by outgrowth of fibers from septal implants. III. Competitive interactions.
    Lewis ER; Cotman CW
    Brain Res; 1982 Feb; 233(1):29-44. PubMed ID: 7059804
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanisms of septal lamination in the developing hippocampus revealed by outgrowth of fibers from septal implants. I. Positional and temporal factors.
    Lewis ER; Cotman CW
    Brain Res; 1980 Sep; 196(2):307-30. PubMed ID: 7397534
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanisms of septal lamination in the developing hippocampus analyzed by outgrowth of fibers from septal implants. II. Absence of guidance by degenerative debris.
    Lewis ER; Cotman CW
    J Neurosci; 1982 Jan; 2(1):66-77. PubMed ID: 7054397
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neonatal septal implants: development of afferent lamination in the rat dentate gyrus.
    Lewis ER; Mueller JC; Cotman CW
    Brain Res Bull; 1980; 5(3):217-21. PubMed ID: 7397565
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vivo evidence for a hippocampal adrenergic neuronotrophic factor specifically released on septal deafferentation.
    Björklund A; Stenevi U
    Brain Res; 1981 Dec; 229(2):403-28. PubMed ID: 7306819
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Non-cholinergic afferents determine the distribution of the cholinergic septohippocampal projection: a study of the AChE staining pattern in the rat fascia dentata and hippocampus after lesions, X-irradiation, and intracerebral grafting.
    Zimmer J; Laurberg S; Sunde N
    Exp Brain Res; 1986; 64(1):158-68. PubMed ID: 3770108
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neurotransmitter characteristics of brain grafts: striatal and septal tissues form the same laminated input to the hippocampus.
    Lewis ER; Cotman CW
    Neuroscience; 1983 Jan; 8(1):57-66. PubMed ID: 6132349
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The organization of the embryonic and early postnatal murine hippocampus. II. Development of entorhinal, commissural, and septal connections studied with the lipophilic tracer DiI.
    Supèr H; Soriano E
    J Comp Neurol; 1994 Jun; 344(1):101-20. PubMed ID: 8063952
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cholinergic axons from delayed septal implants and sympathetic fibers co-exist in the denervated dentate gyrus.
    Kromer LF
    Brain Res Bull; 1982; 9(1-6):539-44. PubMed ID: 7172039
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of growth and reinnervation properties of cholinergic neurons from different brain regions grafted to the hippocampus.
    Nilsson OG; Clarke DJ; Brundin P; Björklund A
    J Comp Neurol; 1988 Feb; 268(2):204-22. PubMed ID: 3360985
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pig fetal septal neurons implanted into the hippocampus of aged or cholinergic deafferented rats grow axons and form cross-species synapses in appropriate target regions.
    Deacon T; Whatley B; LeBlanc C; Lin L; Isacson O
    Cell Transplant; 1999; 8(1):111-29. PubMed ID: 10338280
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cellular, histochemical and connective organization of the hippocampus and fascia dentata transplanted to different regions of immature and adult rat brains.
    Sunde NA; Zimmer J
    Brain Res; 1983 Jun; 284(2-3):165-91. PubMed ID: 6871722
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Histochemical evidence of altered development of cholinergic fibers in the rat dentate gyrus following lesions. II. Effects of partial entorhinal and simultaneous multiple lesions.
    Nadler JV; Cotman CW; Paoletti C; Lynch GS
    J Comp Neurol; 1977 Feb; 171(4):589-604. PubMed ID: 833359
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intracerebral grafting of neuronal cell suspensions. VI. Survival and growth of intrahippocampal implants of septal cell suspensions.
    Björklund A; Gage FH; Stenevi U; Dunnett SB
    Acta Physiol Scand Suppl; 1983; 522():49-58. PubMed ID: 6586055
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Localization and development of nerve growth factor-sensitive rat basal forebrain neurons and their afferent projections to hippocampus and neocortex.
    Koh S; Loy R
    J Neurosci; 1989 Sep; 9(9):2999-0318. PubMed ID: 2552038
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced but delayed axonal sprouting of the commissural/associational pathway following a combined entorhinal cortex/fimbria fornix lesion.
    Schauwecker PE; McNeill TH
    J Comp Neurol; 1995 Jan; 351(3):453-64. PubMed ID: 7535807
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Giant depolarizing potentials: the septal pole of the hippocampus paces the activity of the developing intact septohippocampal complex in vitro.
    Leinekugel X; Khalilov I; Ben-Ari Y; Khazipov R
    J Neurosci; 1998 Aug; 18(16):6349-57. PubMed ID: 9698326
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Factors affecting innervation in the CNS: comparison of three cholinergic cell types transplanted to the hippocampus of adult rats.
    Gibbs RB; Anderson K; Cotman CW
    Brain Res; 1986 Sep; 383(1-2):362-6. PubMed ID: 3768701
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extensive reinnervation of the hippocampus by embryonic basal forebrain cholinergic neurons grafted into the septum of neonatal rats with selective cholinergic lesions.
    Leanza G; Nikkhah G; Nilsson OG; Wiley RG; Björklund A
    J Comp Neurol; 1996 Sep; 373(3):355-7. PubMed ID: 8889933
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lamina-specific synaptic connections of hippocampal neurons in vitro.
    Frotscher M; Heimrich B
    J Neurobiol; 1995 Mar; 26(3):350-9. PubMed ID: 7775968
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.