These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

78 related articles for article (PubMed ID: 7059807)

  • 1. The effect of pituitary removal on pain regulation in the rat.
    Vidal C; Girault JM; Jacob J
    Brain Res; 1982 Feb; 233(1):53-64. PubMed ID: 7059807
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of body temperature and nociception induced by non-noxious stress in rat.
    Vidal C; Suaudeau C; Jacob J
    Brain Res; 1984 Apr; 297(1):1-10. PubMed ID: 6722530
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hyperalgesia induced by non-noxious stress in the rat.
    Vidal C; Jacob J
    Neurosci Lett; 1982 Sep; 32(1):75-80. PubMed ID: 7145227
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of swimming-stress on tail-flick latency of normal and hypophysectomized rats.
    Liu HM
    Chin J Physiol; 1986; 29(2):65-9. PubMed ID: 3581978
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ontogeny of pituitary regulation of growth in the developing rat: comparison of effects of hypophysectomy and hormone replacement on somatic and organ growth, serum insulin-like growth factor-I (IGF-I) and IGF-II levels, and IGF-binding protein levels in the neonatal and juvenile rat.
    Glasscock GF; Gin KK; Kim JD; Hintz RL; Rosenfeld RG
    Endocrinology; 1991 Feb; 128(2):1036-47. PubMed ID: 1703478
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Role of tricyclic antidepressants in the central regulation of hyperalgesia and stress analgesia].
    Karkishchenko NN; Tarakanov AV
    Biull Eksp Biol Med; 1985 Aug; 100(8):193-7. PubMed ID: 4027370
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pituitary control of growth in the neonatal rat: effects of neonatal hypophysectomy on somatic and organ growth, serum insulin-like growth factors (IGF)-I and -II levels, and expression of IGF binding proteins.
    Glasscock GF; Gelber SE; Lamson G; McGee-Tekula R; Rosenfeld RG
    Endocrinology; 1990 Oct; 127(4):1792-803. PubMed ID: 1698146
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of naloxone and hypophysectomy on electroconvulsive shock-induced analgesia.
    Lewis JW; Cannon JT; Chudler EH; Liebeskind JC
    Brain Res; 1981 Mar; 208(1):230-3. PubMed ID: 6258747
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Neurochemical mechanisms of the regulation of pain sensitivity].
    Bragin EO
    Usp Fiziol Nauk; 1985; 16(1):21-42. PubMed ID: 2983505
    [No Abstract]   [Full Text] [Related]  

  • 10. Naloxone hyperalgesia and stress-induced analgesia in rats.
    Coderre TJ; Rollman GB
    Life Sci; 1983 May; 32(18):2139-46. PubMed ID: 6843288
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nociceptive reactions during stimulation of immunity in rats with different individual sensitivities to stress.
    Abramov YB; Kozlov AY; Sinel'shchikova OS; Torgovanova GV
    Neurosci Behav Physiol; 2003 Oct; 33(8):821-6. PubMed ID: 14635999
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stress-induced release of brain and pituitary beta-endorphin: major role of endorphins in generation of hyperthermia, not analgesia.
    Millan MJ; Przewłocki R; Jerlicz M; Gramsch C; Höllt V; Herz A
    Brain Res; 1981 Mar; 208(2):325-38. PubMed ID: 6260287
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Increased sensitivity to acute and persistent pain in neuron-specific endothelin-1 knockout mice.
    Hasue F; Kuwaki T; Kisanuki YY; Yanagisawa M; Moriya H; Fukuda Y; Shimoyama M
    Neuroscience; 2005; 130(2):349-58. PubMed ID: 15664691
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of the paraventricular nucleus and pituitary gland in morphine analgesia.
    Hashimoto M; Ohgami S; Yonemasu Y
    Neurol Med Chir (Tokyo); 1991 Oct; 31(10):629-34. PubMed ID: 1725810
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nociception in mice after chronic stress and chronic narcotic antagonists during maturation.
    Larson AA
    Brain Res; 1982 Jul; 243(2):323-8. PubMed ID: 7104743
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physiological relevance and time course of a tonic endogenous opioid modulation of nociceptive messages, based on the effects of naloxone in a rat model of localized hyperalgesic inflammation.
    Kayser V; Guilbaud G
    Brain Res; 1991 Dec; 567(2):197-203. PubMed ID: 1817726
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Role of the central gray substance in activating the analgesic systems of the rat bran under stress].
    Bragin EO; Vasilenko GF; Durinian RA
    Biull Eksp Biol Med; 1982 May; 93(5):22-4. PubMed ID: 7093499
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A reinvestigation of the analgesic effects induced by stimulation of the periaqueductal gray matter in the rat. II. Differential characteristics of the analgesia induced by ventral and dorsal PAG stimulation.
    Fardin V; Oliveras JL; Besson JM
    Brain Res; 1984 Jul; 306(1-2):125-39. PubMed ID: 6466968
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigating the role of the hypothalamic supraoptic nucleus in nociception in the rat.
    Yang J; Yang Y; Chen JM; Liu WY; Lin BC
    Life Sci; 2008 Jan; 82(3-4):166-73. PubMed ID: 18062994
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Opiate modulation of the active and inactive components of the postshock reaction: parallels between naloxone pretreatment and shock intensity.
    Fanselow MS
    Behav Neurosci; 1984 Apr; 98(2):269-77. PubMed ID: 6721925
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.