These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 7059838)

  • 61. Spinal cord projections from the medial cerebellar nucleus in tree shrew (Tupaia glis).
    Ware CB; Mufson EJ
    Brain Res; 1979 Aug; 171(3):383-400. PubMed ID: 476480
    [TBL] [Abstract][Full Text] [Related]  

  • 62. On the projections from the vestibular and perihypoglossal nuclei to the spinal trigeminal and lateral reticular nuclei in the cat.
    Walberg F; Dietrichs E; Nordby T
    Brain Res; 1985 Apr; 333(1):123-30. PubMed ID: 3995280
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Organisation of the cerebellar nucleus of the dogfish, Scyliorhinus canicula L.: a light microscopic, immunocytochemical, and ultrastructural study.
    Alvarez-Otero R; Perez SE; Rodriguez MA; Anadón R
    J Comp Neurol; 1996 May; 368(4):487-502. PubMed ID: 8744438
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Afferent and efferent connections of the oculomotor region of the fastigial nucleus in the macaque monkey.
    Noda H; Sugita S; Ikeda Y
    J Comp Neurol; 1990 Dec; 302(2):330-48. PubMed ID: 1705268
    [TBL] [Abstract][Full Text] [Related]  

  • 65. The vestibular nuclei in the domestic hen (Gallus domesticus) III. Ascending projections to the mesencephalic eye motor nuclei.
    Wold JE
    J Comp Neurol; 1978 May; 179(2):393-405. PubMed ID: 641224
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Morphological evidence for a monosynaptic connection between cerebellar Purkinje cells and vestibulospinal tract neurons in the larval clawed toad, Xenopus laevis.
    van der Linden JA; ten Donkelaar HJ
    Neurosci Lett; 1990 May; 112(2-3):121-6. PubMed ID: 1694284
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Input to lateral vestibular nucleus as revealed by retrograde horseradish peroxidase technique.
    Ito J; Matsuoka I; Sasa M; Takaori S; Morimoto M
    Adv Otorhinolaryngol; 1983; 30():64-70. PubMed ID: 12325231
    [No Abstract]   [Full Text] [Related]  

  • 68. Identification and distribution of neurons presumed to give rise to cerebellar climbing fibers in turtle. A retrograde axonal flow study using radioactive D-aspartate as a marker.
    Künzle H; Wiklund L
    Brain Res; 1982 Dec; 252(1):146-50. PubMed ID: 7172016
    [TBL] [Abstract][Full Text] [Related]  

  • 69. The vestibulothalamic connections in the rat: a morphological analysis using wheat germ agglutinin-horseradish peroxidase.
    Nagata S
    Brain Res; 1986 Jun; 376(1):57-70. PubMed ID: 3013377
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Organization of the cerebellum in the pigeon (Columba livia): III. Corticovestibular connections with eye and neck premotor areas.
    Arends JJ; Allan RW; Zeigler HP
    J Comp Neurol; 1991 Apr; 306(2):273-89. PubMed ID: 1711055
    [TBL] [Abstract][Full Text] [Related]  

  • 71. The cerebellar and vestibular nuclear complexes in the turtle. I. Projections to mesencephalon, rhombencephalon, and spinal cord.
    Künzle H
    J Comp Neurol; 1985 Dec; 242(1):102-21. PubMed ID: 4078046
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Contralateral as well as ipsilateral projections to raccoon cerebellum from external cuneate nuclei and cell groups f and x.
    Ostapoff EM; Johnson JI
    Brain Behav Evol; 1983; 23(3-4):184-94. PubMed ID: 6667370
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Topographic organization of the corticonuclear projections from the paraflocculus in the albino rat: an autoradiographic orthograde tracing study.
    Umetani T
    Brain Behav Evol; 1993; 42(2):128-36. PubMed ID: 8353721
    [TBL] [Abstract][Full Text] [Related]  

  • 74. The vestibular complex of the American opossum didelphis virginiana. II. Afferent and efferent connections.
    Henkel CK; Martin GF
    J Comp Neurol; 1977 Mar; 172(2):321-48. PubMed ID: 65367
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Neuronal groups and fiber patterns in cerebellar tissue cultures.
    Seil FJ
    Brain Res; 1972 Jul; 42(1):33-51. PubMed ID: 4114816
    [No Abstract]   [Full Text] [Related]  

  • 76. Distribution of zebrin-immunoreactive Purkinje cell terminals in the cerebellar and vestibular nuclei of birds.
    Wylie DR; Pakan JM; Huynh H; Graham DJ; Iwaniuk AN
    J Comp Neurol; 2012 May; 520(7):1532-46. PubMed ID: 22105608
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Organizational features of the cat and monkey cerebellar nucleocortical projection.
    Tolbert DL; Bantli H; Bloedel JR
    J Comp Neurol; 1978 Nov; 182(1):39-56. PubMed ID: 100532
    [TBL] [Abstract][Full Text] [Related]  

  • 78. [Demonstration by light microscopy of the terminal degeneration of afferents of inferior olivary origin in the lateral vestibular (Deiter's) nucleus of the rat].
    Desclin J
    C R Acad Hebd Seances Acad Sci D; 1974 Jun; 278(23):2931-4. PubMed ID: 4212602
    [No Abstract]   [Full Text] [Related]  

  • 79. Do pontocerebellar fibers send collaterals to the cerebellar nuclei?
    Dietrichs E; Bjaalie JG; Brodal P
    Brain Res; 1983 Jan; 259(1):127-31. PubMed ID: 6824925
    [TBL] [Abstract][Full Text] [Related]  

  • 80. A cerebellar projection onto the pontine nuclei. An experimental antaomical study in the cat.
    Brodal A; Destombes J; Lacerda AM; Angaut P
    Exp Brain Res; 1972; 16(2):115-39. PubMed ID: 4567124
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.