These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 7060356)
41. Graphene-supported zinc oxide solid-phase microextraction coating with enhanced selectivity and sensitivity for the determination of sulfur volatiles in Allium species. Zhang S; Du Z; Li G J Chromatogr A; 2012 Oct; 1260():1-8. PubMed ID: 22985527 [TBL] [Abstract][Full Text] [Related]
42. Comprehensively assessing priority odorants emitted from swine slurry combining nontarget screening with olfactory threshold prediction. Cheng Y; Chen T; Zheng G; Yang J; Yu B; Ma C Sci Total Environ; 2024 Mar; 917():170428. PubMed ID: 38286275 [TBL] [Abstract][Full Text] [Related]
43. Gas chromatographic determination of volatile sulfur compounds in the expired alveolar air in hepatopathic subjects. Kaji H; Hisamura M; Saito N; Murao M J Chromatogr; 1978 May; 145(3):464-8. PubMed ID: 659533 [No Abstract] [Full Text] [Related]
44. Chemical identity of a rotting animal-like odor emitted from the inflorescence of the titan arum (Amorphophallus titanum). Shirasu M; Fujioka K; Kakishima S; Nagai S; Tomizawa Y; Tsukaya H; Murata J; Manome Y; Touhara K Biosci Biotechnol Biochem; 2010; 74(12):2550-4. PubMed ID: 21150089 [TBL] [Abstract][Full Text] [Related]
45. Oxygen consumption and development of volatile sulfur compounds during bottle aging of two Shiraz wines. Influence of pre- and postbottling controlled oxygen exposure. Ugliano M; Dieval JB; Siebert TE; Kwiatkowski M; Aagaard O; Vidal S; Waters EJ J Agric Food Chem; 2012 Sep; 60(35):8561-70. PubMed ID: 22900817 [TBL] [Abstract][Full Text] [Related]
46. [Electrochemical methods in pharmaceutical analysis. IV. Application of constant intensity coulometry to the automatic assay of organic sulfur compounds]. Sement E; Rousselet F; Girard ML; Chemla M Ann Pharm Fr; 1972 Oct; 30(10):691-700. PubMed ID: 4656587 [No Abstract] [Full Text] [Related]
47. Characterization of odor emission from alternating aerobic and anoxic activated sludge systems using real-time total reduced sulfur analyzer. Kim H; Lee H; Choi E; Choi I; Shin T; Im H; Ahn S Chemosphere; 2014 Dec; 117():394-401. PubMed ID: 25180483 [TBL] [Abstract][Full Text] [Related]
48. Characterization of Potent Aroma Compounds in Preserved Egg Yolk by Gas Chromatography-Olfactometry, Quantitative Measurements, and Odor Activity Value. Zhang Y; Liu Y; Yang W; Huang J; Liu Y; Huang M; Sun B; Li C J Agric Food Chem; 2018 Jun; 66(24):6132-6141. PubMed ID: 29790747 [TBL] [Abstract][Full Text] [Related]
49. Volatile organic compounds associated with microbial growth in automobile air conditioning systems. Rose LJ; Simmons RB; Crow SA; Ahearn DG Curr Microbiol; 2000 Sep; 41(3):206-9. PubMed ID: 10915209 [TBL] [Abstract][Full Text] [Related]
50. The correlation between organoleptic mouth-odor ratings and levels of volatile sulfur compounds. Schmidt NF; Missan SR; Tarbet WJ Oral Surg Oral Med Oral Pathol; 1978 Apr; 45(4):560-7. PubMed ID: 273847 [TBL] [Abstract][Full Text] [Related]
51. The coupling of the flame photometric detector and the free fatty acid phase (FFAP) capillary column in the trace analysis of sulphur compounds. Goretti G; Possanzini M J Chromatogr; 1973 Mar; 77(2):317-21. PubMed ID: 4121162 [No Abstract] [Full Text] [Related]
52. Flame photometric detection of volatile sulphur compounds in smoke from various types of cigarettes. Groenen PJ; Van Gemert LJ J Chromatogr; 1971 May; 57(2):239-46. PubMed ID: 5575721 [No Abstract] [Full Text] [Related]
53. The method for on-site determination of trace concentrations of methyl mercaptan and dimethyl sulfide in air using a mobile mass spectrometer with atmospheric pressure chemical ionization, combined with a fast enrichment/separation system. Kudryavtsev AS; Makas AL; Troshkov ML; Grachev MА; Pod'yachev SP Talanta; 2014 Jun; 123():140-5. PubMed ID: 24725876 [TBL] [Abstract][Full Text] [Related]
54. [Analysis of odor pollutants in kitchen waste composting]. Zhang HY; Zou KH; Yang JB; Li GX; Yang QY; Zhang F Huan Jing Ke Xue; 2012 Aug; 33(8):2563-8. PubMed ID: 23213873 [TBL] [Abstract][Full Text] [Related]
55. The averaging effect of odorant mixing as determined by air dilution sensory tests: a case study on reduced sulfur compounds. Kim KH Sensors (Basel); 2011; 11(2):1405-17. PubMed ID: 22319360 [TBL] [Abstract][Full Text] [Related]
56. Quantification and reduction of organic sulfur compound formation in a commercial wood pulping process. Zhu JY; Chai XS; Pan XJ; Luo Q; Li J Environ Sci Technol; 2002 May; 36(10):2269-72. PubMed ID: 12038840 [TBL] [Abstract][Full Text] [Related]
57. Effects of food materials on removal of Allium-specific volatile sulfur compounds. Negishi O; Negishi Y; Ozawa T J Agric Food Chem; 2002 Jun; 50(13):3856-61. PubMed ID: 12059171 [TBL] [Abstract][Full Text] [Related]
58. Effect of milk on the deodorization of malodorous breath after garlic ingestion. Hansanugrum A; Barringer SA J Food Sci; 2010 Aug; 75(6):C549-58. PubMed ID: 20722910 [TBL] [Abstract][Full Text] [Related]
59. Effects of mix ratio, moisture content and aeration rate on sulfur odor emissions during pig manure composting. Zang B; Li S; Michel F; Li G; Luo Y; Zhang D; Li Y Waste Manag; 2016 Oct; 56():498-505. PubMed ID: 27363616 [TBL] [Abstract][Full Text] [Related]
60. Comparison of aroma active and sulfur volatiles in three fragrant rice cultivars using GC-olfactometry and GC-PFPD. Mahattanatawee K; Rouseff RL Food Chem; 2014 Jul; 154():1-6. PubMed ID: 24518308 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]