These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 7060647)

  • 1. Effect of aging on the water-soluble and water-insoluble protein pattern in normal human lens.
    Ringens PJ; Hoenders HJ; Bloemendal H
    Exp Eye Res; 1982 Feb; 34(2):201-7. PubMed ID: 7060647
    [No Abstract]   [Full Text] [Related]  

  • 2. Human insoluble lens protein. I. Separation and partial characterization of polypeptides.
    Roy D; Spector A
    Exp Eye Res; 1978 Apr; 26(4):429-43. PubMed ID: 639890
    [No Abstract]   [Full Text] [Related]  

  • 3. Heterogeneity, aging and polypeptide composition of -crystallin from calf lens.
    Hoenders HJ; van Kamp GJ; Liem-The K; van Kleef FS
    Exp Eye Res; 1973 Feb; 15(2):193-200. PubMed ID: 4692232
    [No Abstract]   [Full Text] [Related]  

  • 4. The molecular distribution, weight determination and concentration variation of the total water soluble proteins of the human lens.
    Jedziniak JA; Baram H; Chylack LT
    Exp Eye Res; 1978 Apr; 26(4):377-88. PubMed ID: 639886
    [No Abstract]   [Full Text] [Related]  

  • 5. Protein distribution and characterization in the prenatal and postnatal human lens.
    Ringens PJ; Hoenders HJ; Bloemendal H
    Exp Eye Res; 1982 May; 34(5):815-23. PubMed ID: 7084342
    [No Abstract]   [Full Text] [Related]  

  • 6. Human insoluble lens protein. II. Isolation and characterization of a 9600 dalton polypeptide.
    Roy D; Spector A
    Exp Eye Res; 1978 Apr; 26(4):445-59. PubMed ID: 639891
    [No Abstract]   [Full Text] [Related]  

  • 7. Human lens fiber cell plasma membranes. I. Isolation, polypeptide composition and changes associated with ageing.
    Alcalá J; Valentine J; Maisel H
    Exp Eye Res; 1980 Jun; 30(6):659-77. PubMed ID: 7418744
    [No Abstract]   [Full Text] [Related]  

  • 8. Comparative two-dimensional electrophoretic analysis of water soluble proteins from bovine and murine lenses.
    Garber AT; Gold RJ
    Exp Eye Res; 1982 Dec; 35(6):585-96. PubMed ID: 7151892
    [No Abstract]   [Full Text] [Related]  

  • 9. Transformation of alpha-crystallin polypeptide chains with aging.
    Stauffer J; Rothschild C; Wandel T; Spector A
    Invest Ophthalmol; 1974 Feb; 13(2):135-46. PubMed ID: 4811621
    [No Abstract]   [Full Text] [Related]  

  • 10. Probing the subunit structure of cow anterior lens capsule with the detergent, sodium dodecyl sulfate.
    Peczon BD; McCarthy CA; Merritt RB
    Exp Eye Res; 1982 Dec; 35(6):643-51. PubMed ID: 7151893
    [No Abstract]   [Full Text] [Related]  

  • 11. Studies on lens proteins. I. Subunit structure of beta crystallins of rabbit lens cortex.
    Mostafapour MK; Reddy VN
    Invest Ophthalmol Vis Sci; 1978 Jul; 17(7):660-6. PubMed ID: 669895
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Aging effects of soluble proteins and high molecular weight protein aggregates of human normal lenses (author's transl)].
    Kabasawa I; Kabasawa M; Yoshida H; Sanada Y; Yokota T; Sakaue E
    Nippon Ganka Gakkai Zasshi; 1982; 86(4):464-7. PubMed ID: 7113833
    [No Abstract]   [Full Text] [Related]  

  • 13. Studies on lens proteins. III. Variations in polypeptides of lens beta-crystallins.
    Mostafapour MK; Reddy VN
    Invest Ophthalmol Vis Sci; 1980 Sep; 19(9):1053-8. PubMed ID: 7409997
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lens membranes. XII. Age-relates changes in polypeptide composition of bovine lens fiber membranes.
    Bouman AA; de Leeuw AL; Broekhuyse RM
    Exp Eye Res; 1980 Nov; 31(5):495-503. PubMed ID: 7449884
    [No Abstract]   [Full Text] [Related]  

  • 15. Age-related changes in the structural proteins of human lens.
    Satoh K
    Exp Eye Res; 1972 Jul; 14(1):53-7. PubMed ID: 5039847
    [No Abstract]   [Full Text] [Related]  

  • 16. Water-insoluble high-molecular-weight and alpha-crystallins as the source of the Scheimpflug light scattering pattern in the rat lens.
    Bours J; Ahrend MH; Wegener A; Hockwin O
    Ophthalmic Res; 1990; 22 Suppl 1():90-4. PubMed ID: 2388761
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regional differences in the composition of the bovine lens urea-soluble protein.
    Nasser S; Bradley R; Alcala J; Maisel H
    Exp Eye Res; 1980 Jan; 30(1):109-13. PubMed ID: 7363963
    [No Abstract]   [Full Text] [Related]  

  • 18. Eye lens development and aging processes of crystallins.
    Hoenders HJ; van Kamp GJ
    Acta Morphol Neerl Scand; 1972 Nov; 10(3):215-21. PubMed ID: 4674502
    [No Abstract]   [Full Text] [Related]  

  • 19. Biochemistry of the ageing rat lens. II. Isoelectric focusing of water-soluble crystallins.
    Bours J; Hockwin O
    Ophthalmic Res; 1983; 15(5):234-9. PubMed ID: 6646626
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isoelectric focusing of crystallins in microsections of calf and adult bovine lens. Identification of water-insoluble crystallins complexing under nondenaturing conditions: demonstration of chaperone activity of alpha-crystallin.
    Babizhayev MA; Bours J; Utikal KJ
    Ophthalmic Res; 1996; 28(6):365-74. PubMed ID: 9032796
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.