These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 7060648)

  • 1. Phosphorylcholine and phosphorylethanolamine concentrations in the lens.
    Zelenka PS; Jernigan HM
    Exp Eye Res; 1982 Feb; 34(2):209-17. PubMed ID: 7060648
    [No Abstract]   [Full Text] [Related]  

  • 2. Carrier mediated transport of choline in rat lens.
    Jernigan HM; Kador PF; Kinoshita JH
    Exp Eye Res; 1981 Jun; 32(6):709-17. PubMed ID: 7250222
    [No Abstract]   [Full Text] [Related]  

  • 3. Phosphorylcholine and phosphorylethanolamine in human and rhesus monkey lenses.
    Jernigan HM; Zigler JS
    Exp Eye Res; 1989 Nov; 49(5):901-9. PubMed ID: 2591504
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efflux and hydrolysis of phosphorylethanolamine and phosphorylcholine in stressed cultured rat lenses.
    Jernigan HM; Desouky MA; Geller AM; Blum PS; Ekambaram MC
    Exp Eye Res; 1993 Jan; 56(1):25-33. PubMed ID: 8432332
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Serine and threonine ethanolamine phosphate diesters, and some other unusual compounds in the lens of the cod fish (Gadus morhua) and haddock (Gadus aeglefinus).
    van Heyningen R; Linklater J
    Exp Eye Res; 1976 Jul; 23(1):29-34. PubMed ID: 949991
    [No Abstract]   [Full Text] [Related]  

  • 6. The effect of an aldose reductase inhibitor on lens phosphorylcholine under hyperglycemic conditions: biochemical and NMR studies.
    Lou MF; Garadi R; Thomas DM; Mahendroo PP; York BM; Jernigan HM
    Exp Eye Res; 1989 Jan; 48(1):11-24. PubMed ID: 2493385
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of xylose on the synthesis of phosphorylcholine and phosphorylethanolamine in rat lenses.
    Jernigan HM; Ekambaram MC; Blum PS; Blanchard MS
    Exp Eye Res; 1993 Mar; 56(3):291-7. PubMed ID: 8472784
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of components of phospholipids metabolism in automated phosphate ester chromatography.
    Geiger PJ; Roberts CM
    Biochem Biophys Res Commun; 1979 May; 88(2):508-14. PubMed ID: 465052
    [No Abstract]   [Full Text] [Related]  

  • 9. [Relation between metabolic and histological changes in the rat lens during the pathogenesis of galactose cataract].
    Igarashi H; Yoshida A; Tanaka K
    Nippon Ganka Gakkai Zasshi; 1991 May; 95(5):474-80. PubMed ID: 1872220
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A rat brain cytosolic N-methyltransferase(s) activity converting phosphorylethanolamine into phosphorylcholine.
    Andriamampandry C; Massarelli R; Freysz L; Kanfer JN
    Biochem Biophys Res Commun; 1990 Sep; 171(2):758-63. PubMed ID: 2403362
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibition of ornithine decarboxylase and glutamic acid decarboxylase activities by phosphorylethanolamine and phosphorylcholine.
    Gilad GM; Gilad VH
    Biochem Biophys Res Commun; 1984 Jul; 122(1):277-82. PubMed ID: 6743332
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Organophosphates of the crystalline lens: a nuclear magnetic resonance spectroscopic study.
    Greiner JV; Kopp SJ; Sanders DR; Glonek T
    Invest Ophthalmol Vis Sci; 1981 Nov; 21(5):700-13. PubMed ID: 7298274
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An investigation of phosphorylcholine and phosphorylethanolamine metabolism in the skin and other tissues of the guinea pig, Cavia porcellus.
    Godfrey G
    Comp Biochem Physiol B; 1973 Jan; 44(1):109-16. PubMed ID: 4683992
    [No Abstract]   [Full Text] [Related]  

  • 14. Dynamic changes in the organophosphate profile upon treatment of the crystalline lens with dexamethasone.
    Greiner JV; Kopp SJ; Glonek T
    Invest Ophthalmol Vis Sci; 1982 Jul; 23(1):14-22. PubMed ID: 7085218
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Biochemical characterization of opacification in the crystalline lens].
    Iwata S; Kamei A; Takehana M; Ikemoto F; Sano Y; Horiuchi M; Yamada Y; Hikida M; Kato M; Sugiura E; Shimamoto S; Imayasu M; Miyauchi S; Tamai N; Shirasawa E; Kimura S; Suzuki K
    Nippon Ganka Gakkai Zasshi; 1982; 86(11):1919-43. PubMed ID: 7168401
    [No Abstract]   [Full Text] [Related]  

  • 16. Distribution of taurine in the crystalline lens of vertebrate species and in cataractogenesis.
    Gupta K; Mathur RL
    Exp Eye Res; 1983 Oct; 37(4):379-84. PubMed ID: 6641821
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic changes in the organophosphate profile of the experimental galactose-induced cataract.
    Greiner JV; Kopp SJ; Sanders DR; Glonek T
    Invest Ophthalmol Vis Sci; 1982 May; 22(5):613-24. PubMed ID: 7076407
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Organophosphate metabolites of the human and rabbit crystalline lens: a phosphorus-31 nuclear magnetic resonance spectroscopic analysis.
    Greiner JV; Kopp SJ; Mercola JM; Glonek T
    Exp Eye Res; 1982 Apr; 34(4):545-52. PubMed ID: 6281053
    [No Abstract]   [Full Text] [Related]  

  • 19. The presence of glycogen in lenses of different species.
    Hockwin O
    Exp Eye Res; 1973 Feb; 15(2):235-44. PubMed ID: 4692236
    [No Abstract]   [Full Text] [Related]  

  • 20. Serine ethanolamine phosphodiester: a major component in chicken semen.
    Burt CT; Chalovich JM
    Biochim Biophys Acta; 1978 Apr; 529(1):186-8. PubMed ID: 638178
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.