These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
75 related articles for article (PubMed ID: 7060697)
41. Essential role of the perirhinal cortex in complex tactual discrimination tasks in rats. Ramos JM Cereb Cortex; 2014 Aug; 24(8):2068-80. PubMed ID: 23448873 [TBL] [Abstract][Full Text] [Related]
42. Position reversal deficit in young ferrets. Haddad R; Rabe A; Dumas R; Lazar JW Dev Psychobiol; 1976 Jul; 9(4):311-4. PubMed ID: 955289 [TBL] [Abstract][Full Text] [Related]
44. Scopolamine disrupts visual reversal without affecting the first discrimination. Soffie M; Lamberty Y Physiol Behav; 1987; 40(2):263-5. PubMed ID: 3628536 [TBL] [Abstract][Full Text] [Related]
45. The comparative effects of frontal, parietal, occipitotemporal, and limbic forebrain lesions in weanling rats on learning. Thompson R; Yu J Physiol Behav; 1985 Oct; 35(4):559-67. PubMed ID: 4070431 [TBL] [Abstract][Full Text] [Related]
46. Learning improvement of appetitively or aversively reinforced light-dark discrimination and reversal four weeks after electrical stimulation of the lateral hypothalamus of the rat. Velley L; Chassaing JM; Cardo B Brain Res Bull; 1981 May; 6(5):377-83. PubMed ID: 7248804 [TBL] [Abstract][Full Text] [Related]
47. Nerve growth factor applications fail to alter behavior of hippocampal-lesioned rats. Kimble DP; Bremiller R; Perez-Polo JR Physiol Behav; 1979 Oct; 23(4):653-7. PubMed ID: 504460 [No Abstract] [Full Text] [Related]
48. Effects of trimethyltin on acquisition and reversal of a light-dark discrimination by rats. Woodruff ML; Baisden RH; Cannon RL; Kalbfleisch J; Freeman JN Physiol Behav; 1994 Jun; 55(6):1055-61. PubMed ID: 8047571 [TBL] [Abstract][Full Text] [Related]
49. Effects of testosterone propionate upon habit-reversals and one-trial learning by castrated white rats. Tsai LS Psychol Rep; 1988 Feb; 62(1):3-8. PubMed ID: 3363068 [No Abstract] [Full Text] [Related]
50. Pattern discrimination is affected by entopallial but not by hippocampal lesions in zebra finches. Watanabe S; Mayer U; Bischof HJ Behav Brain Res; 2008 Jul; 190(2):201-5. PubMed ID: 18384892 [TBL] [Abstract][Full Text] [Related]
51. Spatial and visual discrimination learning in CD1 mice: partial analogy between the effect of lesions to the hippocampus and the amygdala. Ammassari-Teule M; De Marsanich B Physiol Behav; 1996 Jul; 60(1):265-71. PubMed ID: 8804674 [TBL] [Abstract][Full Text] [Related]
52. Effect of haloperidol and chlorpromazine on reversal learning of normal and striatectomized rats in a Y-maze. Arushanian EB; Baturin VA Pharmacol Biochem Behav; 1982 Apr; 16(4):541-5. PubMed ID: 7200243 [TBL] [Abstract][Full Text] [Related]
53. Different neuropathological effects of intrahippocampal injections of kainic acid and tetanus toxin. Kessler J; Markowitsch HJ Experientia; 1983 Aug; 39(8):922-4. PubMed ID: 6873250 [TBL] [Abstract][Full Text] [Related]
54. Arm choices in a sunburst maze: effects of hippocampectomy in the rat. Harley CW Physiol Behav; 1979 Aug; 23(2):283-90. PubMed ID: 504418 [No Abstract] [Full Text] [Related]
55. Spatial working memory is independent of hippocampal CA1 long-term potentiation in rats. Kikusui T; Aoyagi A; Kaneko T Behav Neurosci; 2000 Aug; 114(4):700-6. PubMed ID: 10959528 [TBL] [Abstract][Full Text] [Related]
56. Recovery of function after brain damage: differences in aged rats? LeVere ND Neurobiol Aging; 1983; 4(3):181-5. PubMed ID: 6669190 [TBL] [Abstract][Full Text] [Related]
57. Entorhinal cortical lesions in rats and runway alternation performance: changes in patterns of response initiation. Engelhardt F; Steward O Behav Neural Biol; 1980 May; 29(1):91-104. PubMed ID: 7387587 [No Abstract] [Full Text] [Related]
58. Behavioral effects of postnatal lead exposure: possible relationship to hippocampal dysfunction. Alfano DP; Petit TL Behav Neural Biol; 1981 Jul; 32(3):319-33. PubMed ID: 7283922 [No Abstract] [Full Text] [Related]
59. Dentate gyrus progenitor cell proliferation after the onset of spontaneous seizures in the tetanus toxin model of temporal lobe epilepsy. Jiruska P; Shtaya AB; Bodansky DM; Chang WC; Gray WP; Jefferys JG Neurobiol Dis; 2013 Jun; 54():492-8. PubMed ID: 23439313 [TBL] [Abstract][Full Text] [Related]
60. Epileptic activity outlasts disinhibition after intrahippocampal tetanus toxin in the rat. Whittington MA; Jefferys JG J Physiol; 1994 Dec; 481 ( Pt 3)(Pt 3):593-604. PubMed ID: 7707228 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]