These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 7061530)

  • 61. Biodegradable films of partly branched poly(l-lactide)-co-poly(epsilon-caprolactone) copolymer: modulation of phase morphology, plasticization properties and thermal depolymerization.
    Broström J; Boss A; Chronakis IS
    Biomacromolecules; 2004; 5(3):1124-34. PubMed ID: 15132708
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Hydrolytic degradation behavior of biodegradable polyetheresteramide-based polyurethane copolymers.
    Liu C; Gu Y; Qian Z; Fan L; Li J; Chao G; Tu M; Jia W
    J Biomed Mater Res A; 2005 Nov; 75(2):465-71. PubMed ID: 16094664
    [TBL] [Abstract][Full Text] [Related]  

  • 63. A new synthetic absorbable suture.
    Postlethwait RW; Smith BM
    Surg Gynecol Obstet; 1975 Mar; 140(3):377-80. PubMed ID: 123087
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Irradiated polyglactin 910: a new synthetic absorbable suture.
    Tandon SC; Kelly J; Turtle M; Irwin ST
    J R Coll Surg Edinb; 1995 Jun; 40(3):185-7. PubMed ID: 7616473
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Scanning electron microscopic study of the hydrolytic degradation of poly(glycolic acid) suture.
    Chu CC; Campbell ND
    J Biomed Mater Res; 1982 Jul; 16(4):417-30. PubMed ID: 6286685
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Branched polyesters based on poly[vinyl-3-(dialkylamino)alkylcarbamate-co-vinyl acetate-co-vinyl alcohol]-graft-poly(D,L-lactide-co-glycolide): effects of polymer structure on in vitro degradation behaviour.
    Unger F; Wittmar M; Morell F; Kissel T
    Biomaterials; 2008 May; 29(13):2007-14. PubMed ID: 18262641
    [TBL] [Abstract][Full Text] [Related]  

  • 67. The properties of damaged and undamaged suture used in metal and bioabsorbable anchors: an in vitro study.
    Wright PB; Budoff JE; Yeh ML; Kelm ZS; Luo ZP
    Arthroscopy; 2007 Jun; 23(6):655-61. PubMed ID: 17560481
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Miscibility of bioerodible polyphosphazene/poly(lactide-co-glycolide) blends.
    Krogman NR; Singh A; Nair LS; Laurencin CT; Allcock HR
    Biomacromolecules; 2007 Apr; 8(4):1306-12. PubMed ID: 17338563
    [TBL] [Abstract][Full Text] [Related]  

  • 69. A temporary nontoxic lubricant for a synthetic absorbable suture.
    Rodeheaver GT; Foresman PA; Brazda MT; Edlich RF
    Surg Gynecol Obstet; 1987 Jan; 164(1):17-21. PubMed ID: 3541257
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Review paper: absorbable polymeric surgical sutures: chemistry, production, properties, biodegradability, and performance.
    Pillai CK; Sharma CP
    J Biomater Appl; 2010 Nov; 25(4):291-366. PubMed ID: 20971780
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Comparative evaluation of coated and uncoated polyglactin 910 in cataract and muscle surgery.
    Blaydes JE; Berry J
    Ophthalmic Surg; 1980 Nov; 11(11):790-3. PubMed ID: 7005799
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Effect of commonly used surgical solutions on the tensile strength of absorbable sutures: an in-vitro study.
    Cawthorne DP; Castillo TE; Sivakumar BS
    ANZ J Surg; 2021 Jul; 91(7-8):1451-1454. PubMed ID: 33928746
    [TBL] [Abstract][Full Text] [Related]  

  • 73. The role of superoxide ions in the degradation of synthetic absorbable sutures.
    Lee KH; Chu CC
    J Biomed Mater Res; 2000 Jan; 49(1):25-35. PubMed ID: 10559743
    [TBL] [Abstract][Full Text] [Related]  

  • 74. The study of thermal and gross morphologic properties of polyglycolic acid upon annealing and degradation treatments.
    Chu CC; Browning A
    J Biomed Mater Res; 1988 Aug; 22(8):699-712. PubMed ID: 2851009
    [TBL] [Abstract][Full Text] [Related]  

  • 75. The use of Polyglactin 910 in muscle surgery.
    Blaydes JE
    Ophthalmic Surg; 1975; 6(1):39-41. PubMed ID: 1134718
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Evaluation of tensile strength of surgical synthetic absorbable suture materials: an in vitro study.
    Khiste SV; Ranganath V; Nichani AS
    J Periodontal Implant Sci; 2013 Jun; 43(3):130-5. PubMed ID: 23837127
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Hydrolytic degradation and morphologic study of poly-p-dioxanone.
    Lin HL; Chu CC; Grubb D
    J Biomed Mater Res; 1993 Feb; 27(2):153-66. PubMed ID: 8436572
    [TBL] [Abstract][Full Text] [Related]  

  • 78. The effect of commonly used surgical solutions on the tensile strength of sutures.
    Rampat R; Jain S
    J Pediatr Ophthalmol Strabismus; 2014; 51(3):189-90. PubMed ID: 24654799
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Significance of synthetic sutures in urological operations of the cavity system.
    Végh A; Kardos R
    Acta Chir Hung; 1985; 26(4):215-23. PubMed ID: 4082845
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Effects of myrrh on the strength of suture materials: an in vitro study.
    Alshehri MA; Baskaradoss JK; Geevarghese A; Ramakrishnaiah R; Tatakis DN
    Dent Mater J; 2015; 34(2):148-53. PubMed ID: 25736257
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.