These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 7062341)

  • 1. Increase in lipid microviscosity of unilamellar vesicles upon the creation of transmembrane potential.
    Corda D; Pasternak C; Shinitzky M
    J Membr Biol; 1982; 65(3):235-42. PubMed ID: 7062341
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of bacterial endotoxin on the transmembrane electrical potential and plasma membrane fluidity of human monocytes.
    Larsen NE; Enelow RI; Simons ER; Sullivan R
    Biochim Biophys Acta; 1985 Apr; 815(1):1-8. PubMed ID: 3986196
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of lipid composition changes on carbocyanine dye fluorescent response.
    Deleers M; Servais JP; de Laveleye F; Wulfert E
    Biochem Biophys Res Commun; 1984 Aug; 123(1):178-85. PubMed ID: 6541041
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxonol VI as an optical indicator for membrane potentials in lipid vesicles.
    Apell HJ; Bersch B
    Biochim Biophys Acta; 1987 Oct; 903(3):480-94. PubMed ID: 2444259
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microviscosity parameters and protein mobility in biological membranes.
    Shinitzky M; Inbar M
    Biochim Biophys Acta; 1976 Apr; 433(1):133-49. PubMed ID: 1260056
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of the antibiotic peptide microcin J25 on liposomes: role of acyl chain length and negatively charged phospholipid.
    Rintoul MR; de Arcuri BF; Morero RD
    Biochim Biophys Acta; 2000 Dec; 1509(1-2):65-72. PubMed ID: 11118518
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Membrane-potential-dependent changes of the lipid microviscosity of mitochondria and phospholipid vesicles.
    O'Shea PS; Feuerstein-Thelen S; Azzi A
    Biochem J; 1984 Jun; 220(3):795-801. PubMed ID: 6087795
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effective lipid-detergent system for study of membrane active peptides in fluid liposomes.
    Sychev SV; Sukhanov SV; Telezhinskaya IN; Ovchinnikova TV
    J Pept Sci; 2016 Feb; 22(2):98-105. PubMed ID: 26751806
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proton flux in large unilamellar vesicles in response to membrane potentials and pH gradients.
    Redelmeier TE; Mayer LD; Wong KF; Bally MB; Cullis PR
    Biophys J; 1989 Aug; 56(2):385-93. PubMed ID: 2775833
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The rotational diffusion of chloroplast phosphate translocator and of lipid molecules in bilayer membranes.
    Wagner R; Apley EC; Gross A; Flügge UI
    Eur J Biochem; 1989 Jun; 182(1):165-73. PubMed ID: 2471643
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microviscosity in lecithin liposomes: effect of nicotinic acid.
    Bhattacharyya M; Bhowmik BB; Nandy P
    Arch Biochem Biophys; 1988 May; 263(1):117-20. PubMed ID: 3369856
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantification of lipid bilayer effective microviscosity and fluidity effect induced by propofol.
    Bahri MA; Heyne BJ; Hans P; Seret AE; Mouithys-Mickalad AA; Hoebeke MD
    Biophys Chem; 2005 Apr; 114(1):53-61. PubMed ID: 15792861
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interactions of diphtheria toxin with lipid vesicles: determinants of ion channel formation.
    Shiver JW; Donovan JJ
    Biochim Biophys Acta; 1987 Sep; 903(1):48-55. PubMed ID: 2443169
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A lipid vesicle system for probing voltage-dependent peptide-lipid interactions: application to alamethicin channel formation.
    Woolley GA; Deber CM
    Biopolymers; 1989 Jan; 28(1):267-72. PubMed ID: 2470433
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rotational relaxation of the "microviscosity" probe diphenylhexatriene in paraffin oil and egg lecithin vesicles.
    Dale RE; Chen LA; Brand L
    J Biol Chem; 1977 Nov; 252(21):7500-10. PubMed ID: 914824
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acyl chain order and lateral domain formation in mixed phosphatidylcholine--sphingomyelin multilamellar and unilamellar vesicles.
    Lentz BR; Hoechli M; Barenholz Y
    Biochemistry; 1981 Nov; 20(24):6803-9. PubMed ID: 7317355
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enveloped viruses as model membrane systems: microviscosity of vesicular stomatitis virus and host cell membranes.
    Barenholz Y; Moore NF; Wagner RR
    Biochemistry; 1976 Aug; 15(16):3563-70. PubMed ID: 182211
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A model for the effect of lipid oxidation on diphenylhexatriene fluorescence in phospholipid vesicles.
    Barrow DA; Lentz BR
    Biochim Biophys Acta; 1981 Jul; 645(1):17-23. PubMed ID: 7260083
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential movement of ions in artificial phospholipid vesicles.
    Sedgwick EG; Bragg PD
    FEBS Lett; 1990 Oct; 272(1-2):81-4. PubMed ID: 1699806
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fluorescence depolarization studies of phase transitions and fluidity in phospholipid bilayers. 2 Two-component phosphatidylcholine liposomes.
    Lentz BR; Barenholz Y; Thompson TE
    Biochemistry; 1976 Oct; 15(20):4529-37. PubMed ID: 974074
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.