These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 7062445)

  • 1. Triamterene and renal stone formation.
    White DJ; Nancollas GH
    J Urol; 1982 Mar; 127(3):593-7. PubMed ID: 7062445
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Triamterene and renal stone formation: the influence of triamterene and triamterene stones on calcium oxalate crystallization.
    White DJ; Nancollas GH
    Calcif Tissue Int; 1987 Feb; 40(2):79-84. PubMed ID: 3105837
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Triamterene urolithiasis: solubility, pk, effect on crystal formation, and matrix binding of triamterene and its metabolites.
    Werness PG; Bergert JH; Smith LH
    J Lab Clin Med; 1982 Feb; 99(2):254-62. PubMed ID: 7061920
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modulatory effect of the 23-kD calcium oxalate monohydrate binding protein on calcium oxalate stone formation during oxalate stress.
    Asokan D; Kalaiselvi P; Varalakshmi P
    Nephron Physiol; 2004; 97(1):p23-30. PubMed ID: 15153748
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Triamterene nephrolithiasis.
    Ettinger B; Oldroyd NO; Sörgel F
    JAMA; 1980 Nov; 244(21):2443-5. PubMed ID: 7431573
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nucleation of calcium oxalate crystals by albumin: involvement in the prevention of stone formation.
    Cerini C; Geider S; Dussol B; Hennequin C; Daudon M; Veesler S; Nitsche S; Boistelle R; Berthézène P; Dupuy P; Vazi A; Berland Y; Dagorn JC; Verdier JM
    Kidney Int; 1999 May; 55(5):1776-86. PubMed ID: 10231440
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microstructures of Randall's plaques and their interfaces with calcium oxalate monohydrate kidney stones reflect underlying mineral precipitation mechanisms.
    Sethmann I; Wendt-Nordahl G; Knoll T; Enzmann F; Simon L; Kleebe HJ
    Urolithiasis; 2017 Jun; 45(3):235-248. PubMed ID: 27695926
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A model system for the investigation of urinary stone formation.
    Bouropoulos N; Bouropoulos C; Klepetsanis PG; Melekos M; Barbalias G; Koutsoukos PG
    Br J Urol; 1996 Aug; 78(2):169-75. PubMed ID: 8813906
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Agglomeration of calcium oxalate monohydrate in synthetic urine.
    Grases F; Masárová L; Söhnel O; Costa-Bauzá A
    Br J Urol; 1992 Sep; 70(3):240-6. PubMed ID: 1422681
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of agglomeration in calcium oxalate monohydrate urolith development.
    Grases F; Millan A; Söhnel O
    Nephron; 1992; 61(2):145-50. PubMed ID: 1630537
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Renal epithelial cells rapidly bind and internalize calcium oxalate monohydrate crystals.
    Lieske JC; Swift H; Martin T; Patterson B; Toback FG
    Proc Natl Acad Sci U S A; 1994 Jul; 91(15):6987-91. PubMed ID: 8041733
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dual roles of brushite crystals in calcium oxalate crystallization provide physicochemical mechanisms underlying renal stone formation.
    Tang R; Nancollas GH; Giocondi JL; Hoyer JR; Orme CA
    Kidney Int; 2006 Jul; 70(1):71-8. PubMed ID: 16641926
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nucleation at surfaces: the importance of interfacial energy.
    Wu W; Gerard DE; Nancollas GH
    J Am Soc Nephrol; 1999 Nov; 10 Suppl 14():S355-8. PubMed ID: 10541263
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Potential role of fluctuations in the composition of renal tubular fluid through the nephron in the initiation of Randall's plugs and calcium oxalate crystalluria in a computer model of renal function.
    Robertson WG
    Urolithiasis; 2015 Jan; 43 Suppl 1():93-107. PubMed ID: 25407799
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Encrustation of a metal alloy urinary stent: a mechanistic investigation.
    Barbalias GA; Bouropoulos C; Vagenas NV; Bouropoulos N; Siablis D; Liatsikos EN; Karnabatidis D; Koutsoukos PG
    Eur Urol; 2000 Aug; 38(2):144-50. PubMed ID: 10895004
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Papillary and nonpapillary calcium oxalate monohydrate renal calculi: comparative study of etiologic factors.
    Pieras E; Costa-Bauzá A; Ramis M; Grases F
    ScientificWorldJournal; 2006 Apr; 6():2411-9. PubMed ID: 17619710
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Artificial simulation of the early stages of renal stone formation.
    Grases F; Costa-Bauzá A; March JG
    Br J Urol; 1994 Sep; 74(3):298-301. PubMed ID: 7953258
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Study of inhibition mechanisms of glycosaminoglycans on calcium oxalate monohydrate crystals by atomic force microscopy.
    Shirane Y; Kurokawa Y; Miyashita S; Komatsu H; Kagawa S
    Urol Res; 1999 Dec; 27(6):426-31. PubMed ID: 10651130
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystal surface adhesion explains the pathological activity of calcium oxalate hydrates in kidney stone formation.
    Sheng X; Ward MD; Wesson JA
    J Am Soc Nephrol; 2005 Jul; 16(7):1904-8. PubMed ID: 15930089
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystallization in urine.
    Nancollas GH; Gaur SS
    Scan Electron Microsc; 1984; (Pt 4):1759-64. PubMed ID: 6523051
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.