BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 7063139)

  • 41. Is overshoot caused by an efferent reduction in cochlear gain?
    Fletcher M; de Boer J; Krumbholz K
    Adv Exp Med Biol; 2013; 787():65-72. PubMed ID: 23716210
    [TBL] [Abstract][Full Text] [Related]  

  • 42. [Influence of the olivo-cochlear bundle (OCB) on/cochlear microphonic (CM) potentials and on action potentials (AP). II. Stimulation of the OCB].
    Precerutti G; Vescovi V
    Boll Soc Ital Biol Sper; 1975 Aug; 51(15-16):941-6. PubMed ID: 1218115
    [No Abstract]   [Full Text] [Related]  

  • 43. Effect of anesthesia on maximal cochlear microphonics.
    Samara M; Tonndorf J
    Hear Res; 1981 Nov; 5(2-3):337-42. PubMed ID: 7309647
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Absence of tonic activity of the crossed olivocochlear bundle in determining compound action potential thresholds, amplitudes and masking phenomena in anaesthetised guinea pigs with normal hearing sensitivities.
    Rajan R; Robertson D; Johnstone BM
    Hear Res; 1990 Mar; 44(2-3):195-207. PubMed ID: 2329094
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effects of centrifugal pathways on responses of cochlear nucleus neurons to signals in noise.
    Mulders WH; Seluakumaran K; Robertson D
    Eur J Neurosci; 2008 Feb; 27(3):702-14. PubMed ID: 18279322
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Protective effect of the cochlear efferent system during noise exposure.
    Attanasio G; Barbara M; Buongiorno G; Cordier A; Mafera B; Piccoli F; Nostro G; Filipo R
    Ann N Y Acad Sci; 1999 Nov; 884():361-7. PubMed ID: 10842606
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Evidence for efferent effects on auditory afferent activity, and their functional relevance.
    Hill JC; Prasher DK; Luxon LM
    Clin Otolaryngol Allied Sci; 1997 Oct; 22(5):394-402. PubMed ID: 9372248
    [No Abstract]   [Full Text] [Related]  

  • 48. Cochlear efferent feedback balances interaural sensitivity.
    Darrow KN; Maison SF; Liberman MC
    Nat Neurosci; 2006 Dec; 9(12):1474-6. PubMed ID: 17115038
    [TBL] [Abstract][Full Text] [Related]  

  • 49. On the role of the olivocochlear bundle in hearing: 16 case studies.
    Scharf B; Magnan J; Chays A
    Hear Res; 1997 Jan; 103(1-2):101-22. PubMed ID: 9007578
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Cochlea and auditory nerve.
    Eggermont JJ
    Handb Clin Neurol; 2019; 160():437-449. PubMed ID: 31277867
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Temporal factors associated with cochlear nerve tuning to dual and single tones: a qualitative study.
    Henry KR
    J Acoust Soc Am; 1998 Oct; 104(4):2272-9. PubMed ID: 10491691
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Cochlear action potential tuning curves recorded with a derived response technique.
    Salt AN; Garcia P
    J Acoust Soc Am; 1990 Sep; 88(3):1392-402. PubMed ID: 2229674
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effect of human auditory efferent feedback on cochlear gain and compression.
    Yasin I; Drga V; Plack CJ
    J Neurosci; 2014 Nov; 34(46):15319-26. PubMed ID: 25392499
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Influence of efferent stimulation on acoustically responsive vestibular afferents in the cat.
    McCue MP; Guinan JJ
    J Neurosci; 1994 Oct; 14(10):6071-83. PubMed ID: 7931563
    [TBL] [Abstract][Full Text] [Related]  

  • 55. AP tuning curves from normal and pathological human and guinea pig cochleas.
    Harrison RV; Aran JM; Erre JP
    J Acoust Soc Am; 1981 May; 69(5):1374-85. PubMed ID: 7240567
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The effect of sectioning auditory centrifugal fibers on the cochlear microphonic and action potential in guinea pigs.
    Talbott RE; Barry J; Barry SJ
    J Aud Res; 1978 Oct; 18(4):299-306. PubMed ID: 756871
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The role of efferent inhibition in human auditory attention: an examination of the auditory brainstem potentials.
    Lukas JH
    Int J Neurosci; 1981; 12(2):137-45. PubMed ID: 7203823
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Responses of medial olivocochlear neurons. Specifying the central pathways of the medial olivocochlear reflex.
    Brown MC; de Venecia RK; Guinan JJ
    Exp Brain Res; 2003 Dec; 153(4):491-8. PubMed ID: 14557911
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Morphology, synaptology and electrophysiology of the developing cochlea.
    Pujol R
    Acta Otolaryngol Suppl; 1985; 421():5-9. PubMed ID: 3862330
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Ionic mechanism of the efferent olivo-cochlear inhibition studied by cochlear perfusion in the cat.
    Desmedt JE; Robertson D
    J Physiol; 1975 May; 247(2):407-28. PubMed ID: 1097639
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.