These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 7063572)

  • 1. Progression of thermal injury: a morphologic study.
    deCamara DL; Raine TJ; London MD; Robson MC; Heggers JP
    Plast Reconstr Surg; 1982 Mar; 69(3):491-9. PubMed ID: 7063572
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrastructural aspects of cooled thermal injury.
    de Camara DL; Raine T; Robson MC
    J Trauma; 1981 Nov; 21(11):911-9. PubMed ID: 7299859
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence-based injury prediction data for the water temperature and duration of exposure for clinically relevant deep dermal scald injuries.
    Andrews CJ; Kimble RM; Kempf M; Cuttle L
    Wound Repair Regen; 2017 Sep; 25(5):792-804. PubMed ID: 28857337
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Changes in the microvasculature of skin subjected to thermal injury.
    Nanney LB
    Burns Incl Therm Inj; 1982 May; 8(5):321-7. PubMed ID: 7093796
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The progression of burn depth in experimental burns: a histological and methodological study.
    Papp A; Kiraly K; Härmä M; Lahtinen T; Uusaro A; Alhava E
    Burns; 2004 Nov; 30(7):684-90. PubMed ID: 15475143
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of a Consistent and Reproducible Porcine Scald Burn Model.
    Andrews CJ; Kempf M; Kimble R; Cuttle L
    PLoS One; 2016; 11(9):e0162888. PubMed ID: 27612153
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Effects of seawater immersion on the inflammatory response and oxygen free radical injury of rats with superficial partial-thickness scald at early stage].
    Yang YX; Wang JH; Liu L; Zou Q; Zhang Y; Bai Z
    Zhonghua Shao Shang Za Zhi; 2017 Jun; 33(6):361-367. PubMed ID: 28648040
    [No Abstract]   [Full Text] [Related]  

  • 8. Preclinical assessment of safety and efficacy of intravenous delivery of autologous adipose-derived regenerative cells (ADRCs) in the treatment of severe thermal burns using a porcine model.
    Foubert P; Liu M; Anderson S; Rajoria R; Gutierrez D; Zafra D; Tenenhaus M; Fraser JK
    Burns; 2018 Sep; 44(6):1531-1542. PubMed ID: 29958745
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estimating the time and temperature relationship for causation of deep-partial thickness skin burns.
    Abraham JP; Plourde B; Vallez L; Stark J; Diller KR
    Burns; 2015 Dec; 41(8):1741-1747. PubMed ID: 26188899
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Time-dependent morphological and biochemical changes following cutaneous thermal burn injury and their modulation by copper nicotinate complex: an animal model.
    Nassar MA; Eldien HM; Tawab HS; Saleem TH; Omar HM; Nassar AY; Hussein MR
    Ultrastruct Pathol; 2012 Oct; 36(5):343-55. PubMed ID: 23025652
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Repigmentation after burn injury in the guinea-pig.
    Sowemimo GO; Naim J; Harrison HN; Lee JC
    Burns Incl Therm Inj; 1982 May; 8(5):345-57. PubMed ID: 7093800
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A standardized model of partial thickness scald burns in mice.
    Cribbs RK; Luquette MH; Besner GE
    J Surg Res; 1998 Nov; 80(1):69-74. PubMed ID: 9790817
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Epidermal aquaporin-3 is increased in the cutaneous burn wound.
    Sebastian R; Chau E; Fillmore P; Matthews J; Price LA; Sidhaye V; Milner SM
    Burns; 2015 Jun; 41(4):843-7. PubMed ID: 25603981
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of subatmospheric pressure to prevent progression of partial-thickness burns in a swine model.
    Morykwas MJ; David LR; Schneider AM; Whang C; Jennings DA; Canty C; Parker D; White WL; Argenta LC
    J Burn Care Rehabil; 1999; 20(1 Pt 1):15-21. PubMed ID: 9934631
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A finite-element model predicts thermal damage in cutaneous contact burns.
    Orgill DP; Solari MG; Barlow MS; O'Connor NE
    J Burn Care Rehabil; 1998; 19(3):203-9. PubMed ID: 9622462
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of cultured human epidermal allografts for the treatment of extensive partial thickness scald burn in children.
    Soeda J; Inokuchi S; Ueno S; Yokoyama S; Kidokoro M; Nakamura Y; Katoh S; Sawada Y; Osada M; Mitomi T
    Tokai J Exp Clin Med; 1993 Jun; 18(1-2):65-70. PubMed ID: 7940610
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A porcine deep dermal partial thickness burn model with hypertrophic scarring.
    Cuttle L; Kempf M; Phillips GE; Mill J; Hayes MT; Fraser JF; Wang XQ; Kimble RM
    Burns; 2006 Nov; 32(7):806-20. PubMed ID: 16884856
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dielectric measurement in experimental burns: a new tool for burn depth determination?
    Papp A; Lahtinen T; Härmä M; Nuutinen J; Uusaro A; Alhava E
    Plast Reconstr Surg; 2006 Mar; 117(3):889-98; discussion 899-901. PubMed ID: 16525281
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [The post-burn process--a determinant in local surgical treatment of deep burns].
    Bäumer F; Henrich HA
    Aktuelle Traumatol; 1988 Dec; 18(6):249-54. PubMed ID: 2907251
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Histopathological evaluation of scalds and contact burns in the pig model.
    Brans TA; Dutrieux RP; Hoekstra MJ; Kreis RW; du Pont JS
    Burns; 1994; 20 Suppl 1():S48-51. PubMed ID: 8198744
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.