These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 7065250)

  • 1. Renal sugar transport in the winter flounder. VI. Reabsorption of D-mannose.
    Pritchard JB; Booz GW; Kleinzeller A
    Am J Physiol; 1982 Apr; 242(4):F415-22. PubMed ID: 7065250
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The phlorizin effect on the transport of sugars at the antiluminal face of teased flounder tubules.
    Kleinzeller A; Dubyak G; Mullin JF; McAvoy EM
    J Exp Zool; 1977 Mar; 199(3):391-4. PubMed ID: 850118
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Na(+)-dependent uptake of 1,5-anhydro-D-glucitol via the transport systems for D-glucose and D-mannose in the kidney epithelial cell line, LLC-PK1.
    Saito H; Ohtomo T; Inui K
    Nihon Jinzo Gakkai Shi; 1996 Oct; 38(10):435-40. PubMed ID: 8940824
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Renal sugar transport in the winter flounder. III. Two glucose transport systems.
    Kleinzeller A; Dubyak GR; Griffin PM; McAvoy EM; Mullin JM; Rittmaster R
    Am J Physiol; 1977 Mar; 232(3):F227-34. PubMed ID: 842670
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sugar transport across the peritubular face of renal cells of the flounder.
    Kleinzeller A; McAvoy EM
    J Gen Physiol; 1973 Aug; 62(2):169-84. PubMed ID: 4722567
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Active renal hexose transport. Structural requirements.
    Kleinzeller A; McAvoy EM; McKibbin RD
    Biochim Biophys Acta; 1980 Aug; 600(2):513-29. PubMed ID: 7407126
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 2-Deoxy-D-glucose transport in dog kidney.
    Silverman M; Turner RJ
    Am J Physiol; 1982 Jun; 242(6):F711-20. PubMed ID: 7091323
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A D-mannose transport system in renal brush-border membranes.
    Mendelssohn DC; Silverman M
    Am J Physiol; 1989 Dec; 257(6 Pt 2):F1100-7. PubMed ID: 2603956
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Renal sugar transport in the winter flounder. I. Renal clearance studies.
    Pritchard JB; Kleinzeller A
    Am J Physiol; 1976 Aug; 231(2):603-7. PubMed ID: 961913
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Potential-dependent D-glucose uptake by renal brush border membrane vesicles in the absence of sodium.
    Hilden S; Sacktor B
    Am J Physiol; 1982 Apr; 242(4):F340-5. PubMed ID: 7065244
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetic characterization of Na+/D-mannose cotransport in dog kidney: comparison with Na+/D-glucose cotransport.
    Silverman M; Ho L
    Biochim Biophys Acta; 1993 Nov; 1153(1):34-42. PubMed ID: 8241248
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transport of monosaccharides in kidney-cortex cells.
    Kleinzeller A; Kolínská J; Benes I
    Biochem J; 1967 Sep; 104(3):852-60. PubMed ID: 6049927
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Na+-independent D-glucose transport in rabbit renal basolateral membranes.
    Cheung PT; Hammerman MR
    Am J Physiol; 1988 May; 254(5 Pt 2):F711-8. PubMed ID: 3364579
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of the D-glucose/Na+ cotransport system in the intestinal brush-border membrane by using the specific substrate, methyl alpha-D-glucopyranoside.
    Brot-Laroche E; Supplisson S; Delhomme B; Alcalde AI; Alvarado F
    Biochim Biophys Acta; 1987 Nov; 904(1):71-80. PubMed ID: 3663668
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Na+-dependent D-mannose transporter in the apical membrane of chicken small intestine epithelial cells.
    Cano M; Calonge ML; Peral MJ; Ilundáin AA
    Pflugers Arch; 2001 Feb; 441(5):686-91. PubMed ID: 11294251
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Na(+)-dependent transport of D-xylose by bovine intestinal brush border membrane vesicles (BBMV) is inhibited by various pentoses and hexoses.
    Scharrer E; Grenacher B
    J Vet Med A Physiol Pathol Clin Med; 2000 Dec; 47(10):617-26. PubMed ID: 11199210
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Renal sugar transport in the winter flounder. II. Galactose transport system.
    Kleinzeller A; Dubyak GR; Mullin JM
    Am J Physiol; 1976 Aug; 231(2):608-13. PubMed ID: 961914
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High affinity phlorizin receptor sites and their relation to the glucose transport mechanism in the proximal tubule of dog kidney.
    Silverman M; Black J
    Biochim Biophys Acta; 1975 Jun; 394(1):10-30. PubMed ID: 1095065
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural requirements for active intestinal sugar transport. The involvement of hydrogen bonds at C-1 and C-6 of the sugar.
    Barnett JE; Jarvis WT; Munday KA
    Biochem J; 1968 Aug; 109(1):61-7. PubMed ID: 5669849
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Renal sugar transport in the winter flounder: V. secretion of 2-deoxy-D-galactose.
    Pritchard JB; Booz G; Kleinzeller A
    Am J Physiol; 1978 May; 234(5):F424-31. PubMed ID: 25586
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.