These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

74 related articles for article (PubMed ID: 7066469)

  • 1. Changes in raman vibrational bands of calf thymus DNA during the B-to-A transition.
    Martin JC; Wartell RM
    Biopolymers; 1982 Mar; 21(3):499-512. PubMed ID: 7066469
    [No Abstract]   [Full Text] [Related]  

  • 2. Stabilization of the B conformation in unoriented films of calf thymus DNA by NaCl: a Raman and IR study.
    Kim JS; Lee SA; Carter BJ; Rupprecht A
    Biopolymers; 1997 Feb; 41(2):233-8. PubMed ID: 9004554
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Raman study of the time variability for the A-to-B transition in wet-spun films of calf-thymus DNA.
    Szabó A; Shi B; Lee SA; Rupprecht A
    J Biomol Struct Dyn; 1996 Jun; 13(6):1029-33. PubMed ID: 8832385
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Reversal of B to A transition in DNA by bis-(20guanidoethyl)disulfide].
    Tselikova SV; Mandrugin AA; Lobachev VM; Ivanov VI
    Biofizika; 1982; 27(2):322-4. PubMed ID: 7074159
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of DNA structures by laser Raman spectroscopy.
    Prescott B; Steinmetz W; Thomas GJ
    Biopolymers; 1984 Feb; 23(2):235-56. PubMed ID: 6704487
    [No Abstract]   [Full Text] [Related]  

  • 6. B-->Z transition in native calf thymus DNA depends on its microenvironment.
    Ali N; Ali R
    Biochem Mol Biol Int; 1993 Mar; 29(3):539-44. PubMed ID: 8485469
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Numerical simulations of Raman spectra of guanine-cytosine Watson-Crick and protonated Hoogsteen base pairs.
    Morari CI; Muntean CM
    Biopolymers; 2003; 72(5):339-44. PubMed ID: 12949824
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Centrifugal field relaxation and ionic strength effects on calf thymus DNA gels.
    Richard AJ
    Biopolymers; 1983 Mar; 22(3):935-43. PubMed ID: 6850055
    [No Abstract]   [Full Text] [Related]  

  • 9. Sequence and temperature dependence of the interbase hydrogen-bond breathing modes in B-DNA polymers: comparison with low-frequency Raman peaks and their role in helix melting.
    Chen YZ; Prohofsky EW
    Biopolymers; 1995 Jun; 35(6):573-82. PubMed ID: 7766823
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Local conformational changes induced in B-DNA by ethidium intercalation.
    Benevides JM; Thomas GJ
    Biochemistry; 2005 Mar; 44(8):2993-9. PubMed ID: 15723542
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The presence of two modes of binding to calf thymus DNA by metal-free bleomycin: a low frequency Raman study.
    Rajani C; Kincaid JR; Petering DH
    Biopolymers; 1999; 52(3):129-46. PubMed ID: 11169381
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of Ca2+ cations on low pH-induced DNA structural transitions.
    Muntean CM; Puppels GJ; Greve J; Segers-Nolten GM
    Biopolymers; 2002; 67(4-5):282-4. PubMed ID: 12012448
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vibrational circular dichroism and IR absorption of DNA complexes with Cu2+ ions.
    Andrushchenko V; van de Sande JH; Wieser H
    Biopolymers; 2003; 72(5):374-90. PubMed ID: 12949828
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quasielastic light scattering by biopolymers. IV. Tertiary collapse of calf thymus CNA in 5.5 M LiCl.
    Parthasarathy N; Schmitz KS; Cowman MK
    Biopolymers; 1980 Jun; 19(6):1137-51. PubMed ID: 7189682
    [No Abstract]   [Full Text] [Related]  

  • 15. Ionic and structural effects on the thermal helix-coil transition of DNA complexed with natural and synthetic polyamines.
    Thomas TJ; Bloomfield VA
    Biopolymers; 1984 Jul; 23(7):1295-306. PubMed ID: 6466769
    [No Abstract]   [Full Text] [Related]  

  • 16. The pH-dependent structure of calf thymus DNA studied by Raman spectroscopy.
    O'Connor T; Mansy S; Bina M; McMillin DR; Bruck MA; Tobias RS
    Biophys Chem; 1982 Apr; 15(1):53-64. PubMed ID: 7074208
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular and cellular interactions between intoplicine, DNA, and topoisomerase II studied by surface-enhanced Raman scattering spectroscopy.
    Morjani H; Riou JF; Nabiev I; Lavelle F; Manfait M
    Cancer Res; 1993 Oct; 53(20):4784-90. PubMed ID: 8402662
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A systematic approach toward the analysis of drug-DNA interactions using Raman spectroscopy: the binding of metal-free bleomycins A(2) and B(2) to calf thymus DNA.
    Rajani C; Kincaid JR; Petering DH
    Biopolymers; 1999; 52(3):110-28. PubMed ID: 11169380
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interhelical effects on the low-frequency modes and phase transitions of Li- and Na-DNA.
    Demarco C; Lindsay SM; Pokorny M; Powell J; Rupprecht A
    Biopolymers; 1985 Nov; 24(11):2035-40. PubMed ID: 4063459
    [No Abstract]   [Full Text] [Related]  

  • 20. Raman microspectroscopic study of effects of Na(I) and Mg(II) ions on low pH induced DNA structural changes.
    Muntean CM; Segers-Nolten GM
    Biopolymers; 2003; 72(4):225-9. PubMed ID: 12833476
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.