These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 7066487)

  • 1. Lipolytic and adenyl-cyclase-stimulating activity of N alpha-trinitrophenyl glucagon: comparison with other glucagon derivatives modified at the amino terminus.
    Jean-Baptiste E; Rizack MA; Epand RM
    Biosci Rep; 1982 Mar; 2(3):163-7. PubMed ID: 7066487
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lipolytic and adenyl-cyclase-stimulating activity of glucagon 1-6: comparison with glucagon derivatives chemically modified in the 7-29 sequence.
    Jean-Baptiste E; Rizack MA; Epand RM
    Biosci Rep; 1982 Oct; 2(10):819-24. PubMed ID: 7171745
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of specific trinitrophenylation of the lysine epsilon amino group of glucagon on receptor binding and adenylate cyclase activation.
    Liepnieks JJ; Epand RM
    Arch Biochem Biophys; 1983 Aug; 225(1):102-9. PubMed ID: 6311099
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural requirements for glucagon receptor binding and activation of adenylate cyclase in liver. Study of chemically modified forms of the hormone, including N alpha-trinitrophenyl glucagon, an antagonist.
    Epand RM; Rosselin G; Hoa DH; Cote TE; Laburthe M
    J Biol Chem; 1981 Feb; 256(3):1128-32. PubMed ID: 6256384
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of nonspecific hydrophobic interactions in the biological activity of N epsilon-acyl derivatives of glucagon. Studies of conformation, receptor binding, and adenylate cyclase activation.
    Carrey EA; Epand RM
    J Biol Chem; 1982 Sep; 257(18):10624-30. PubMed ID: 6286664
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effects of the trinitrophenylation of the amino groups of glucagon on its conformational properties and on its ability to activate rat liver adenylyl cyclase.
    Epand RM; Wheeler GE
    Biochim Biophys Acta; 1975 May; 393(1):236-46. PubMed ID: 237568
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Methylation of glucagon, characterization of the sulfonium derivative, and regeneration of the native covalent structure.
    Rothgeb TM; Jones BN; Hayes DF; Gurd RS
    Biochemistry; 1977 Dec; 16(26):5813-8. PubMed ID: 588556
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Increased sensitivity of adipocyte adenylate cyclase to glucagon in the fasted state.
    Chohan P; Saggerson D
    FEBS Lett; 1982 Sep; 146(2):357-60. PubMed ID: 7140982
    [No Abstract]   [Full Text] [Related]  

  • 9. The rapid desensitization of glucagon-stimulated adenylate cyclase is a cyclic AMP-independent process that can be mimicked by hormones which stimulate inositol phospholipid metabolism.
    Murphy GJ; Hruby VJ; Trivedi D; Wakelam MJ; Houslay MD
    Biochem J; 1987 Apr; 243(1):39-46. PubMed ID: 3038085
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [In vivo stimulation of adenyl cyclase in rats].
    Adler G; Lewartowska A
    Endokrynol Pol; 1985; 36(6):315-22. PubMed ID: 3009168
    [No Abstract]   [Full Text] [Related]  

  • 11. Hormone receptors. I. Activation of rat liver plasma membrane adenylyl cyclase and fat cell lipolysis by agarose-glucagon.
    Johnson CB; Blecher M; Giorgio NA
    Biochem Biophys Res Commun; 1972 Feb; 46(3):1035-41. PubMed ID: 5012158
    [No Abstract]   [Full Text] [Related]  

  • 12. Glucagon antagonists. Synthesis and inhibitory properties of Asp3-containing glucagon analogs.
    Andreu D; Merrifield RB
    Eur J Biochem; 1987 May; 164(3):585-90. PubMed ID: 3032623
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nalpha-trinitrophenyl glucagon: an inhibitor of glucagon-stimulated cyclic AMP production and its effects on glycogenolysis.
    Cote TE; Epand RM
    Biochim Biophys Acta; 1979 Jan; 582(2):295-306. PubMed ID: 216418
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modulation of age-related loss of glucagon-promoted lipolysis by food restriction.
    Voss KH; Masoro EJ; Anderson W
    Mech Ageing Dev; 1982 Feb; 18(2):135-49. PubMed ID: 6278234
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of starvation, refeeding, and fat feeding on adipocyte ghost adenyl cyclase activity.
    Gorman RR; Tepperman HM; Tepperman J
    J Lipid Res; 1972 Mar; 13(2):276-80. PubMed ID: 4335799
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glucagon-stimulable adenylyl cyclase in rat liver. The impact of streptozotocin-induced diabetes mellitus.
    Dighe RR; Rojas FJ; Birnbaumer L; Garber AJ
    J Clin Invest; 1984 Apr; 73(4):1013-23. PubMed ID: 6323532
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glucagon-stimulable adenylyl cyclase in rat liver. Effects of chronic uremia and intermittent glucagon administration.
    Dighe RR; Rojas FJ; Birnbaumer L; Garber AJ
    J Clin Invest; 1984 Apr; 73(4):1004-12. PubMed ID: 6323531
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vasoactive intestinal polypeptide and glucagon: stimulation of adenylate cyclase activity via distinct receptors in liver and fat cell membranes.
    Desbuguois B; Laudat MH; Laudat P
    Biochem Biophys Res Commun; 1973 Aug; 53(4):1187-94. PubMed ID: 4356054
    [No Abstract]   [Full Text] [Related]  

  • 19. Comparative efficacy of seven synthetic glucagon analogs, modified in position 1, 2 and/or 12, on liver and heart adenylate cyclase from rat.
    Robberecht P; Waelbroeck M; Camus JC; De Neef P; Coy DH; Christophe J
    Peptides; 1986; 7 Suppl 1():109-12. PubMed ID: 3018688
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential acid stabilities of citraconylated amino groups of glucagon. Preparation of N alpha-citraconyl glucagon and evaluation of its biological properties.
    Liepnieks JJ; Epand RM
    Biochim Biophys Acta; 1982 Oct; 707(2):171-7. PubMed ID: 6291617
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.