These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 7066490)

  • 41. Elementary steps in the reaction mechanism of chicken liver fatty acid synthase: acetylation-deacetylation.
    Cognet JA; Hammes GG
    Biochemistry; 1983 Jun; 22(12):3002-7. PubMed ID: 6871181
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Essential and nonessential thiols of yeast hexokinase. Reactions with iodoacetate and iodoacetamide.
    Jones JG; Otieno S; Barnard EA; Bhargava AK
    Biochemistry; 1975 Jun; 14(11):2396-403. PubMed ID: 237532
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The architecture of the animal fatty acid synthetase complex. IV. Mapping of active centers and model for the mechanism of action.
    Tsukamoto Y; Wong H; Mattick JS; Wakil SJ
    J Biol Chem; 1983 Dec; 258(24):15312-22. PubMed ID: 6654914
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Irreversible inhibition of fatty acid synthase from rat mammary gland with S-(4-bromo-2,3-dioxobutyl)-CoA. Effect on the partial reactions, protection by substrates and stoichiometry studies.
    Clements PR; Barden RE; Ahmad PM; Chisner MB; Ahmad F
    Biochem J; 1982 Nov; 207(2):291-6. PubMed ID: 7159383
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Kinetic studies of the fatty acid synthetase multienzyme complex from Euglena gracilis variety bacillaris.
    Walker TA; Jonak ZL; Worsham LM; Ernst-Fonberg ML
    Biochem J; 1981 Nov; 199(2):383-92. PubMed ID: 6803763
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Probing the mechanism of hamster arylamine N-acetyltransferase 2 acetylation by active site modification, site-directed mutagenesis, and pre-steady state and steady state kinetic studies.
    Wang H; Vath GM; Gleason KJ; Hanna PE; Wagner CR
    Biochemistry; 2004 Jun; 43(25):8234-46. PubMed ID: 15209520
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Selenium inhibition of avian fatty acid synthetase complex.
    Donaldson WE
    Chem Biol Interact; 1977 Jun; 17(3):313-20. PubMed ID: 880699
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Inhibition of pigeon liver fatty acid synthetase by specific modification of lysine residues with 2,4,6-trinitrobenzenesulphonic acid.
    Mukherjee S; Katiyar SS
    J Enzyme Inhib; 2000; 15(4):421-7. PubMed ID: 10995072
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Mammalian fatty acid synthetase is a structurally and functionally symmetrical dimer.
    Smith S; Stern A; Randhawa ZI; Knudsen J
    Eur J Biochem; 1985 Nov; 152(3):547-55. PubMed ID: 3840436
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The yeast fatty acid synthase. Pathway for transfer of the acetyl group from coenzyme A to the Cys-SH of the condensation site.
    Stoops JK; Singh N; Wakil SJ
    J Biol Chem; 1990 Oct; 265(28):16971-7. PubMed ID: 2211602
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Binding site of cerulenin in fatty acid synthetase.
    Funabashi H; Kawaguchi A; Tomoda H; Omura S; Okuda S; Iwasaki S
    J Biochem; 1989 May; 105(5):751-5. PubMed ID: 2666407
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Pig kidney dopa decarboxylase: inactivation by iodoacetamide and sequence of the carboxyamidomethylcysteine-containing peptide.
    Dominici P; Simmaco M; Tancini B; Barra D; Borri Voltattorni C
    J Enzyme Inhib; 1989; 3(1):67-76. PubMed ID: 2487323
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Studies on phosphoglyceromutase from chicken breast muscle: number and reactivity of sulfhydryl groups.
    Carne TJ; McKay DJ; Flynn TG
    Can J Biochem; 1976 Apr; 54(4):307-20. PubMed ID: 178418
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Fatty acid synthetase complex. Selective inactivation by phenylmethylsulphonyl fluoride.
    Kumar S
    Biochem Biophys Res Commun; 1973 Jul; 53(1):334-41. PubMed ID: 4741553
    [No Abstract]   [Full Text] [Related]  

  • 55. Selective modification of the active center of renal iodothyronine 5'-deiodinase by iodoacetate.
    Leonard JL; Visser TJ
    Biochim Biophys Acta; 1984 Jun; 787(2):122-30. PubMed ID: 6733113
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Purification and properties of the polymeric fatty acid synthetase from a filamentous fungus.
    Giompres P; Packter NM
    Biochim Biophys Acta; 1978 May; 529(2):189-200. PubMed ID: 350287
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The structure and function of ribonuclease T1. XXI. Modification of histidine residues in ribonuclease T1 with iodoacetamide.
    Takahashi K
    J Biochem; 1976 Dec; 80(6):1267-75. PubMed ID: 14120
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Transcription by T7 RNA polymerase is not zinc-dependent and is abolished on amidomethylation of cysteine-347.
    King GC; Martin CT; Pham TT; Coleman JE
    Biochemistry; 1986 Jan; 25(1):36-40. PubMed ID: 3082355
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Amino acid sequences of substrate-binding sites in chicken liver fatty acid synthase.
    Chang SI; Hammes GG
    Biochemistry; 1988 Jun; 27(13):4753-60. PubMed ID: 3167014
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Selective chemical modification of human liver aldehyde dehydrogenases E1 and E2 by iodoacetamide.
    Hempel JD; Pietruszko R
    J Biol Chem; 1981 Nov; 256(21):10889-96. PubMed ID: 7287739
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.