These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 7066748)

  • 1. Surface potential and conductance induced in lipid bilayers by the negatively charged ionophore Br-X537A.
    Roy G; Okada Y; Laprade R
    Can J Biochem; 1982 Jan; 60(1):42-8. PubMed ID: 7066748
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cation and local anesthetic conductance induced by the negatively charged ionophore Br-X537A in lipid bilayers.
    Roy G; Okada Y; Laprade R
    Can J Biochem; 1982 Jan; 60(1):49-56. PubMed ID: 7066749
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrical measurement of electroneutral fluxes of divalent cations through charged planar phospholipid membranes.
    Moronne MM; Cohen JA
    Biochim Biophys Acta; 1982 Jun; 688(3):793-7. PubMed ID: 6288093
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of amine structure on complexation with lasalocid in model membrane systems. I. Identification of charged complexes in lipid bilayer membranes.
    Kinsel JF; Melnik EI; Lindenbaum S; Sternson LA; Ovchinnikov YuA
    Biochim Biophys Acta; 1982 Jan; 684(2):233-40. PubMed ID: 7055564
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface potential determination in planar lipid bilayers: a simplification of the conductance-ratio method.
    Abdulkader F; Arcisio-Miranda M; Curi R; Procopio J
    J Biochem Biophys Methods; 2007 Apr; 70(3):515-8. PubMed ID: 17303247
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alamethicin channel conductance modified by lipid charge.
    Aguilella VM; Bezrukov SM
    Eur Biophys J; 2001 Aug; 30(4):233-41. PubMed ID: 11548125
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A hydroxide ion carrier in planar phospholipid bilayer membranes: (C6F5)2Hg (dipentafluorophenylmercury).
    Blaustein RO; Finkelstein A
    Biochim Biophys Acta; 1988 Dec; 946(2):221-6. PubMed ID: 3207739
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Membrane surface-charge titration probed by gramicidin A channel conductance.
    Rostovtseva TK; Aguilella VM; Vodyanoy I; Bezrukov SM; Parsegian VA
    Biophys J; 1998 Oct; 75(4):1783-92. PubMed ID: 9746520
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The influence of pH on the conductance of lipid bimolecular membranes in relation to the alkaline ion transport induced by carboxylic carriers grisorixin, alborixin and monensin.
    Sandeaux R; Seta P; Jeminet G; Alleaume M; Gavach C
    Biochim Biophys Acta; 1978 Aug; 511(3):499-508. PubMed ID: 28761
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Formation of ion-translocating oligomers by nigericin.
    Toro M; Arzt E; Cerbón J; Alegría G; Alva R; Meas Y; Estrada S
    J Membr Biol; 1987; 95(1):1-8. PubMed ID: 3560206
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exchange diffusion of dopamine induced in planar lipid bilayer membranes by the ionophore X537A.
    Holz RW
    J Gen Physiol; 1977 May; 69(5):633-53. PubMed ID: 16982
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proton conduction in gramicidin A and in its dioxolane-linked dimer in different lipid bilayers.
    Cukierman S; Quigley EP; Crumrine DS
    Biophys J; 1997 Nov; 73(5):2489-502. PubMed ID: 9370442
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effects of lipid composition on the binding of lasalocid A to small unilamellar vesicles.
    Grunwald R; Painter GR
    Biochim Biophys Acta; 1990 Sep; 1027(3):245-52. PubMed ID: 2397235
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The translocation of Ca2+ across phospholipid bilayers induced by a synthetic neutral Ca2+ -ionophore.
    Vuilleumier P; Gazzotti P; Carafoli E; Simon W
    Biochim Biophys Acta; 1977 May; 467(1):12-8. PubMed ID: 324520
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selective transport of Li+ across lipid bilayer membranes mediated by an ionophore of novel design (ETH1644).
    Zeevi A; Margalit R
    J Membr Biol; 1985; 86(1):61-7. PubMed ID: 3840208
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ionophores X537A and A23187. Effects on the permeability of lipid bimolecular membranes to dopamine and calcium.
    Kafka MS; Holz RW
    Biochim Biophys Acta; 1976 Feb; 426(1):31-7. PubMed ID: 764880
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Changes of conductance and compressibility of bilayer lipid membranes induced by oligonucleotide-cationic polyene antibiotic complexes.
    Hianik T; Ostatnik L; Polohova V; Bolard J
    Bioelectrochemistry; 2008 Nov; 74(1):2-8. PubMed ID: 17904427
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The stoichiometry of A23187- and X537A-mediated calcium ion transport across lipid bilayers.
    Blau L; Stern RB; Bittman R
    Biochim Biophys Acta; 1984 Nov; 778(1):219-23. PubMed ID: 6437447
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of phospholipid surface charge on ion conduction in the K+ channel of sarcoplasmic reticulum.
    Bell JE; Miller C
    Biophys J; 1984 Jan; 45(1):279-87. PubMed ID: 6324908
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of membrane viscosity on the lateral and transverse mobility of carboxylic ionophores.
    Deleers M; Malaisse WJ
    Chem Phys Lipids; 1982 Nov; 31(3):227-35. PubMed ID: 6816476
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.