BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 7066764)

  • 21. Transport of mannose by an inducible phosphoenolpyruvate:fructose phosphotransferase system in Streptococcus salivarius.
    Pelletier G; Frenette M; Vadeboncoeur C
    Microbiology (Reading); 1994 Sep; 140 ( Pt 9)():2433-8. PubMed ID: 7952194
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Regulation of lactose transport by the phosphoenolpyruvate-sugar phosphotransferase system in membrane vesicles of Escherichia coli.
    Dills SS; Schmidt MR; Saier MH
    J Cell Biochem; 1982; 18(2):239-44. PubMed ID: 7040431
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Control of sugar utilization in oral streptococci. Properties of phenotypically distinct 2-deoxyglucose-resistant mutants of Streptococcus salivarius.
    Gauthier L; Bourassa S; Brochu D; Vadeboncoeur C
    Oral Microbiol Immunol; 1990 Dec; 5(6):352-9. PubMed ID: 2098716
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Glucose transport by a mutant of Streptococcus mutans unable to accumulate sugars via the phosphoenolpyruvate phosphotransferase system.
    Cvitkovitch DG; Boyd DA; Thevenot T; Hamilton IR
    J Bacteriol; 1995 May; 177(9):2251-8. PubMed ID: 7730250
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Properties of the lactose transport system in Klebsiella sp. strain CT-1.
    Imai K; Hall BG
    J Bacteriol; 1981 Mar; 145(3):1459-62. PubMed ID: 6907272
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Control of phosphoenolpyruvate-dependent phosphotransferase-mediated sugar transport in Escherichia coli by energization of the cell membrane.
    Reider E; Wagner EF; Schweiger M
    Proc Natl Acad Sci U S A; 1979 Nov; 76(11):5529-33. PubMed ID: 392504
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of growth conditions on the Streptococcus bovis phosphoenolpyruvate glucose phosphotransferase system.
    Moore GA; Martin SA
    J Anim Sci; 1991 Dec; 69(12):4967-73. PubMed ID: 1808190
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The phosphoenolpyruvate:mannose phosphotransferase system of Streptococcus salivarius. Functional and biochemical characterization of IIABL(Man) and IIABH(Man).
    Pelletier M; Lortie LA; Frenette M; Vadeboncoeur C
    Biochemistry; 1998 Feb; 37(6):1604-12. PubMed ID: 9484231
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Bacterial phosphotransferase system: regulation of the glucose and mannose enzymes II by sulfhydryl oxidation.
    Grenier FC; Waygood EB; Saier MH
    Biochemistry; 1985 Aug; 24(18):4872-6. PubMed ID: 3907693
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evidence for the involvement of proton motive force in the transport of glucose by a mutant of Streptococcus mutans strain DR0001 defective in glucose-phosphoenolpyruvate phosphotransferase activity.
    Hamilton IR; St Martin EJ
    Infect Immun; 1982 May; 36(2):567-75. PubMed ID: 6282753
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of nutritional constraints on the biosynthesis of the components of the phosphoenolpyruvate: sugar phosphotransferase system in a fresh isolate of Streptococcus mutans.
    Rodrigue L; Lacoste L; Trahan L; Vadeboncoeur C
    Infect Immun; 1988 Feb; 56(2):518-22. PubMed ID: 3338847
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Structure and properties of the phosphoenolpyruvate: glucose phosphotransferase system of oral streptococci.
    Vadeboncoeur C
    Can J Microbiol; 1984 Apr; 30(4):495-502. PubMed ID: 6744123
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Escherichia coli phosphoenolpyruvate-dependent phosphotransferase system. Evidence that the dimer is the active form of enzyme I.
    Misset O; Brouwer M; Robillard GT
    Biochemistry; 1980 Mar; 19(5):883-90. PubMed ID: 6986909
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Distribution of proteins similar to IIIManH and IIIManL of the Streptococcus salivarius phosphoenolpyruvate:mannose-glucose phosphotransferase system among oral and nonoral bacteria.
    Pelletier M; Frenette M; Vadeboncoeur C
    J Bacteriol; 1995 May; 177(9):2270-5. PubMed ID: 7730253
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [The alpha-methylglucoside transport in Escherichia coli K12 cells].
    Shul'gina MV; Kalacheb IIa; Burd GI
    Biokhimiia; 1977 Dec; 42(12):2235-45. PubMed ID: 339963
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Facilitated diffusion of fructose via the phosphoenolpyruvate/glucose phosphotransferase system of Escherichia coli.
    Kornberg HL; Lambourne LT; Sproul AA
    Proc Natl Acad Sci U S A; 2000 Feb; 97(4):1808-12. PubMed ID: 10677538
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Kinetic characterization and regulation of phosphoenolpyruvate-dependent methyl alpha-D-glucopyranoside transport by Salmonella typhimurium membrane vesicles.
    Liu KD; Roseman S
    Proc Natl Acad Sci U S A; 1983 Dec; 80(23):7142-5. PubMed ID: 6359164
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Physiological studies on regulation of glycerol utilization by the phosphoenolpyruvate:sugar phosphotransferase system in Enterococcus faecalis.
    Romano AH; Saier MH; Harriott OT; Reizer J
    J Bacteriol; 1990 Dec; 172(12):6741-8. PubMed ID: 2123855
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Sugar transport by the bacterial phosphotransferase system. Preparation and characterization of membrane vesicles from mutant and wild type Salmonella typhimurium.
    Beneski DA; Misko TP; Roseman S
    J Biol Chem; 1982 Dec; 257(23):14565-75. PubMed ID: 6754736
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Staphylococcal phosphoenolpyruvate-dependent phosphotransferase system--two highly similar glucose permeases in Staphylococcus carnosus with different glucoside specificity: protein engineering in vivo?
    Christiansen I; Hengstenberg W
    Microbiology (Reading); 1999 Oct; 145 ( Pt 10)():2881-9. PubMed ID: 10537210
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.