These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 7066990)

  • 21. Iontophoretic release of cyclic AMP and dispersion of melanosomes within a single melanophore.
    Geschwind II; Horowitz JM; Mikuckis GM; Dewey RD
    J Cell Biol; 1977 Sep; 74(3):928-39. PubMed ID: 198412
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Desensitization of pigment granule aggregation in Xenopus leavis melanophores: melatonin degradation rather than receptor down-regulation is responsible.
    Teh MT; Sugden D
    J Neurochem; 2002 May; 81(4):719-27. PubMed ID: 12065631
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An endogenous 5-HT(7) receptor mediates pigment granule dispersion in Xenopus laevis melanophores.
    Teh MT; Sugden D
    Br J Pharmacol; 2001 Apr; 132(8):1799-808. PubMed ID: 11309252
    [TBL] [Abstract][Full Text] [Related]  

  • 24. oca2 Regulation of chromatophore differentiation and number is cell type specific in zebrafish.
    Beirl AJ; Linbo TH; Cobb MJ; Cooper CD
    Pigment Cell Melanoma Res; 2014 Mar; 27(2):178-89. PubMed ID: 24330346
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Melanin-concentrating hormone is a major substance mediating light wavelength-dependent skin color change in larval zebrafish.
    Mizusawa K; Kasagi S; Takahashi A
    Gen Comp Endocrinol; 2018 Dec; 269():141-148. PubMed ID: 30195023
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Characterization of a serotonin receptor endogenous to frog melanophores.
    Potenza MN; Lerner MR
    Naunyn Schmiedebergs Arch Pharmacol; 1994 Jan; 349(1):11-9. PubMed ID: 8139699
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Alpha1 and alpha2 adrenoceptor mediated melanosome aggregatory responses in vitro in Oreochromis mossambica (Peters) melanophores.
    Acharya LS; Ovais M
    Indian J Exp Biol; 2007 Nov; 45(11):984-91. PubMed ID: 18072544
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Iodothyronine 5'-deiodinase activity in the amphibian Rana catesbeiana at different stages of the life cycle.
    Galton VA
    Endocrinology; 1988 May; 122(5):1746-50. PubMed ID: 3258817
    [TBL] [Abstract][Full Text] [Related]  

  • 29. On the embryonic origin of adult melanophores: the role of ErbB and Kit signalling in establishing melanophore stem cells in zebrafish.
    Dooley CM; Mongera A; Walderich B; Nüsslein-Volhard C
    Development; 2013 Mar; 140(5):1003-13. PubMed ID: 23364329
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Melanosome formation in cultured amelanotic melanophores of Rana brevipoda by a frog tyrosinase cDNA Transfection.
    Okumoto H; Nishioka M; Miura I; Obika M
    Pigment Cell Res; 1995 Aug; 8(4):187-93. PubMed ID: 8610069
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Panax ginseng induces anterograde transport of pigment organelles in Xenopus melanophores.
    Eriksson TL; Svensson SP; Lundström I; Persson K; Andersson TP; Andersson RG
    J Ethnopharmacol; 2008 Sep; 119(1):17-23. PubMed ID: 18639398
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Conservation of the chromatophore pigment response.
    Dukovcic SR; Hutchison JR; Trempy JE
    J Appl Toxicol; 2010 Aug; 30(6):574-81. PubMed ID: 20809546
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Xenopus tadpole melanophores are controlled by dark and light and melatonin without influence of time of day.
    Binkley S; Mosher K; Rubin F; White B
    J Pineal Res; 1988; 5(1):87-97. PubMed ID: 3367263
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mitf contributes to melanosome distribution and melanophore dendricity.
    Kawasaki A; Kumasaka M; Satoh A; Suzuki M; Tamura K; Goto T; Asashima M; Yamamoto H
    Pigment Cell Melanoma Res; 2008 Feb; 21(1):56-62. PubMed ID: 18353143
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Pigment migration in the dermal melanophores of amphibian larvae in the interphase and during mitosis].
    Starodubov SM; Golichenkov VA
    Ontogenez; 1988; 19(3):279-83. PubMed ID: 3262842
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Whole-Cell Photoacoustic Sensor Based on Pigment Relocalization.
    Lauri A; Soliman D; Omar M; Stelzl A; Ntziachristos V; Westmeyer GG
    ACS Sens; 2019 Mar; 4(3):603-612. PubMed ID: 30663315
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The development of the pars intermedia and its role in the regulation of dermal melanophores in the larvae of the amphibian Xenopus laevis.
    Verburg-van Kemenade BM; Willems PH; Jenks BG; van Overbeeke AP
    Gen Comp Endocrinol; 1984 Jul; 55(1):54-65. PubMed ID: 6086446
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An association of melanophores appearing at metamorphosis as vehicles of asymmetric skin color formation with pigment anomalies developed under hatchery conditions in the Japanese flounder, Paralichthys olivaceus.
    Seikai T; Matsumoto J; Shimozaki M; Oikawa A; Akiyama T
    Pigment Cell Res; 1987; 1(3):143-51. PubMed ID: 3149739
    [TBL] [Abstract][Full Text] [Related]  

  • 39. α- and β-adrenoceptors of zebrafish in melanosome movement: a comparative study between embryo and adult melanophores.
    Xu J; Xie FK
    Biochem Biophys Res Commun; 2011 Feb; 405(2):250-5. PubMed ID: 21219872
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Pigment cell pattern formation in Taricha torosa: the role of the extracellular matrix in controlling pigment cell migration and differentiation.
    Tucker RP; Erickson CA
    Dev Biol; 1986 Nov; 118(1):268-85. PubMed ID: 3770303
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.