BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 7067654)

  • 1. Characterization of organomercury-decomposing activity in cell extract of mercury-resistant Clostridium cochlearium T-2P.
    Pan-Hou HS; Kajikawa Y; Imura N
    Ecotoxicol Environ Saf; 1982 Feb; 6(1):82-8. PubMed ID: 7067654
    [No Abstract]   [Full Text] [Related]  

  • 2. Role of hydrogen sulfide in mercury resistance determined by plasmid of Clostridium cochlearium T-2.
    Pan-Hou HS; Imura N
    Arch Microbiol; 1981 Mar; 129(1):49-52. PubMed ID: 7224780
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physiological role of mercury-methylation in Clostridium cochlearium T-2C.
    Pan-Hou HS; Imura N
    Bull Environ Contam Toxicol; 1982 Sep; 29(3):290-7. PubMed ID: 7126920
    [No Abstract]   [Full Text] [Related]  

  • 4. Plasmid-controlled mercury biotransformation by Clostridium cochlearium T-2.
    Pan-Hou HS; Hosono M; Imura N
    Appl Environ Microbiol; 1980 Dec; 40(6):1007-11. PubMed ID: 7458307
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Involvement of mercury methylation in microbial mercury detoxication.
    Pan-Hou HS; Imura N
    Arch Microbiol; 1982 Mar; 131(2):176-7. PubMed ID: 6462125
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Studies on microbial synthesis and decomposition of organomercury compounds.
    Taira M
    Nihon Eiseigaku Zasshi; 1975 Oct; 30(4):461-89. PubMed ID: 1240998
    [No Abstract]   [Full Text] [Related]  

  • 7. Lack of involvement of merT and merP in methylmercury transport in mercury resistant Pseudomonas K-62.
    Kiyono M; Omura T; Fujimori H; Pan-Hou H
    FEMS Microbiol Lett; 1995 May; 128(3):301-6. PubMed ID: 7781979
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The biotransformation of organomercury compounds.
    Daniel JW
    Biochem J; 1972 Nov; 130(2):64P-65P. PubMed ID: 4664593
    [No Abstract]   [Full Text] [Related]  

  • 9. Uptake of mercuric chloride and methylmercury chloride from liquid media by Aspergillus niger and Penicillium notatum.
    Hardcastle JE; Mavichakana N
    Bull Environ Contam Toxicol; 1974 May; 11(5):456-60. PubMed ID: 4433832
    [No Abstract]   [Full Text] [Related]  

  • 10. Purification and properties of an enzyme catalyzing the splitting of carbon-mercury linkages from mercury-resistant Pseudomonas K-62 strain. I. Splitting enzyme 1.
    Tezuka T; Tonomura K
    J Biochem; 1976 Jul; 80(1):79-87. PubMed ID: 9382
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Removal of methylmercury and tributyltin (TBT) using marine microorganisms.
    Lee SE; Chung JW; Won HS; Lee DS; Lee YW
    Bull Environ Contam Toxicol; 2012 Feb; 88(2):239-44. PubMed ID: 22212416
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Summary of recent studies in Japan on methyl mercury poisoning.
    Kojima K; Fujita M
    Toxicology; 1973 Mar; 1(1):43-62. PubMed ID: 4203273
    [No Abstract]   [Full Text] [Related]  

  • 13. Mercury and organomercurial degrading enzymes in a broad-spectrum Hg-resistant strain of Bacillus pasteurii.
    Pahan K; Ghosh DK; Ray S; Gachhui R; Chaudhuri J; Mandal A
    Bull Environ Contam Toxicol; 1994 Apr; 52(4):582-9. PubMed ID: 8167453
    [No Abstract]   [Full Text] [Related]  

  • 14. Microbial transformations of mercury: potentials, challenges, and achievements in controlling mercury toxicity in the environment.
    Barkay T; Wagner-Döbler I
    Adv Appl Microbiol; 2005; 57():1-52. PubMed ID: 16002008
    [No Abstract]   [Full Text] [Related]  

  • 15. The effect of aqueous speciation and cellular ligand binding on the biotransformation and bioavailability of methylmercury in mercury-resistant bacteria.
    Ndu U; Barkay T; Schartup AT; Mason RP; Reinfelder JR
    Biodegradation; 2016 Feb; 27(1):29-36. PubMed ID: 26693726
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biliary excretion of mercury compounds.
    Klaassen CD
    Toxicol Appl Pharmacol; 1975 Aug; 33(2):356-65. PubMed ID: 1179438
    [No Abstract]   [Full Text] [Related]  

  • 17. Effects of the soil microbial community on mobile proportions and speciation of mercury (Hg) in contaminated soil.
    Száková J; Havlíčková J; Šípková A; Gabriel J; Švec K; Baldrian P; Sysalová J; Coufalík P; Červenka R; Zvěřina O; Komárek J; Tlustoš P
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2016; 51(4):364-70. PubMed ID: 26761522
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microbial transformation of mercury species and their importance in the biogeochemical cycle of mercury.
    Baldi F
    Met Ions Biol Syst; 1997; 34():213-57. PubMed ID: 9046572
    [No Abstract]   [Full Text] [Related]  

  • 19. [Application of mercury-resistant genes in bioremediation of mercurials in environments].
    Pan-Hou H
    Yakugaku Zasshi; 2010 Sep; 130(9):1143-56. PubMed ID: 20823672
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The pharmacology of mercury compounds.
    Clarkson TW
    Annu Rev Pharmacol; 1972; 12():375-406. PubMed ID: 4556945
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.