These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

80 related articles for article (PubMed ID: 7068345)

  • 21. Effects of carbon monoxide on isolated heart muscle cells.
    Wittenberg BA; Wittenberg JB
    Res Rep Health Eff Inst; 1993 Dec; (62):1-12; discussion 13-21. PubMed ID: 8155298
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of vaginal birth versus caesarean section birth with general anesthesia on blood gases and brain energy metabolism in neonatal rats.
    Vaillancourt C; Berger N; Boksa P
    Exp Neurol; 1999 Nov; 160(1):142-50. PubMed ID: 10630199
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Changes in mitochondrial matrix free calcium in perfused rat hearts subjected to hypoxia-reoxygenation.
    Allen SP; Darley-Usmar VM; McCormack JG; Stone D
    J Mol Cell Cardiol; 1993 Aug; 25(8):949-58. PubMed ID: 7505340
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Brain metabolism after 30 minutes of hypoxic or anoxic perfusion or ischemia.
    Kintner D; Costello DJ; Levin AB; Gilboe DD
    Am J Physiol; 1980 Dec; 239(6):E501-9. PubMed ID: 7446725
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Recovery of postischemic brain metabolism and function following treatment with a free radical scavenger and platelet-activating factor antagonists.
    Gilboe DD; Kintner D; Fitzpatrick JH; Emoto SE; Esanu A; Braquet PG; Bazan NG
    J Neurochem; 1991 Jan; 56(1):311-9. PubMed ID: 1987322
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cellular energy utilization and supply during hypoxia in embryonic cardiac myocytes.
    Budinger GR; Chandel N; Shao ZH; Li CQ; Melmed A; Becker LB; Schumacker PT
    Am J Physiol; 1996 Jan; 270(1 Pt 1):L44-53. PubMed ID: 8772526
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Brain hypoxia and the role of active forms of oxygen and of energy deficit in the neuron degeneration].
    Ivanov KP
    Usp Fiziol Nauk; 2012; 43(1):95-110. PubMed ID: 22567831
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Canine cerebral metabolism and blood flow during hypoxemia and normoxic recovery from hypoxemia.
    Artru AA; Michenfelder JD
    J Cereb Blood Flow Metab; 1981; 1(3):277-83. PubMed ID: 7328143
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cerebral glucose and energy metabolism, cerebral oxygen consumption, and blood flow in arterial hypoxaemia.
    Hamer J; Wiedemann K; Berlet H; Weinhardt F; Hoyer S
    Acta Neurochir (Wien); 1978; 44(3-4):151-60. PubMed ID: 742420
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Protective effect of hypothermia in cerebral oxygen deficiency caused by arterial hypoxia.
    Carlsson C; Hägerdal M; Siesjö BK
    Anesthesiology; 1976 Jan; 44(1):27-35. PubMed ID: 930
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cerebral oxygen utilization as a gauge of brain energy metabolism.
    Gilboe DD; Kintner D; Yanushka J
    Adv Exp Med Biol; 1984; 180():169-77. PubMed ID: 6534097
    [No Abstract]   [Full Text] [Related]  

  • 32. Changes of synaptosomal energy metabolism induced by hypoxia during aging.
    Benzi G; Giuffrida AM
    Neurochem Res; 1987 Feb; 12(2):149-57. PubMed ID: 3574592
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Energetic response of coronary endothelial cells to hypoxia.
    Mertens S; Noll T; Spahr R; Krützfeldt A; Piper HM
    Am J Physiol; 1990 Mar; 258(3 Pt 2):H689-94. PubMed ID: 2316683
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cerebral energy metabolite levels and survival following exposure to low inspired oxygen concentration.
    Keykhah MM; Welsh FA; Miller AS; Harp JR; DeFeo SP
    Crit Care Med; 1978; 6(5):330-4. PubMed ID: 720089
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Consequences of mild, graded hypoxia.
    Blass JP; Gibson GE
    Adv Neurol; 1979; 26():229-50. PubMed ID: 42286
    [No Abstract]   [Full Text] [Related]  

  • 36. Relationships between aerobic and anaerobic energy production in turtle brain in situ.
    Lutz PL; McMahon P; Rosenthal M; Sick TJ
    Am J Physiol; 1984 Oct; 247(4 Pt 2):R740-4. PubMed ID: 6093562
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparative effects of dihydroergotoxine (DHET) on CBF and metabolism changes produced by experimental cerebral edema, hypoxia and hypertension.
    Cahn J; Borzeix MG
    Gerontology; 1978; 24 Suppl 1():34-42. PubMed ID: 618778
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Oxidative metabolic effects of cerebral hypoxia.
    Jöbsis FF
    Adv Neurol; 1979; 26():299-318. PubMed ID: 517303
    [No Abstract]   [Full Text] [Related]  

  • 39. Brain mitochondrial function after ischemia and hypoxia. I. Ischemia induced by increased intracranial pressure.
    Schutz H; Silverstein PR; Vapalahti M; Bruce DA; Mela L; Langfitt TW
    Arch Neurol; 1973 Dec; 29(6):408-16. PubMed ID: 4759416
    [No Abstract]   [Full Text] [Related]  

  • 40. Oxygen diffusion and mitochondrial respiration in neuroblastoma cells.
    Robiolio M; Rumsey WL; Wilson DF
    Am J Physiol; 1989 Jun; 256(6 Pt 1):C1207-13. PubMed ID: 2735396
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.