These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 7068540)

  • 21. Demonstration of high-affinity Mn2+ uptake in Saccharomyces cerevisiae: specificity and kinetics.
    Gadd GM; Laurence OS
    Microbiology (Reading); 1996 May; 142 ( Pt 5)():1159-1167. PubMed ID: 8704957
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cation transport alteration associated with plasmid-determined resistance to cadmium in Staphylococcus aureus.
    Weiss AA; Silver S; Kinscherf TG
    Antimicrob Agents Chemother; 1978 Dec; 14(6):856-65. PubMed ID: 742873
    [TBL] [Abstract][Full Text] [Related]  

  • 23. ATP-dependent cadmium transport by the cadA cadmium resistance determinant in everted membrane vesicles of Bacillus subtilis.
    Tsai KJ; Yoon KP; Lynn AR
    J Bacteriol; 1992 Jan; 174(1):116-21. PubMed ID: 1530844
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Substrate-dependent cadmium toxicity affecting energy-linked K+/86Rb transport in Staphylococcus aureus.
    Tynecka Z; Malm A; Kosikowska U; Kot A
    Folia Microbiol (Praha); 1998; 43(6):617-22. PubMed ID: 10069010
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Manganese transport in Brevibacterium ammoniagenes ATCC 6872.
    Schmid J; Auling G
    J Bacteriol; 1987 Jul; 169(7):3385-7. PubMed ID: 3597325
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cadmium transport by a Cd2+-sensitive and a Cd2+-resistant strain of Bacillus subtilis.
    Burke BE; Pfister RM
    Can J Microbiol; 1986 Jul; 32(7):539-42. PubMed ID: 3091227
    [TBL] [Abstract][Full Text] [Related]  

  • 27. 2-Oxoglutarate transport system in Staphylococcus aureus.
    Tynecka Z; Korona-Głowniak I; Loś R
    Arch Microbiol; 2001 Jul; 176(1-2):143-50. PubMed ID: 11479714
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Resistance to mercury and to cadmium in chromosomally resistant Staphylococcus aureus.
    Witte W; Green L; Misra TK; Silver S
    Antimicrob Agents Chemother; 1986 Apr; 29(4):663-9. PubMed ID: 3635384
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Plasmid-borne cadmium resistance genes in Listeria monocytogenes are similar to cadA and cadC of Staphylococcus aureus and are induced by cadmium.
    Lebrun M; Audurier A; Cossart P
    J Bacteriol; 1994 May; 176(10):3040-8. PubMed ID: 8188605
    [TBL] [Abstract][Full Text] [Related]  

  • 30. ZIP8, member of the solute-carrier-39 (SLC39) metal-transporter family: characterization of transporter properties.
    He L; Girijashanker K; Dalton TP; Reed J; Li H; Soleimani M; Nebert DW
    Mol Pharmacol; 2006 Jul; 70(1):171-80. PubMed ID: 16638970
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cadmium transport, resistance, and toxicity in bacteria, algae, and fungi.
    Trevors JT; Stratton GW; Gadd GM
    Can J Microbiol; 1986 Jun; 32(6):447-64. PubMed ID: 3089567
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cadmium inhibits plasma membrane calcium transport.
    Verbost PM; Flik G; Lock RA; Wendelaar Bonga SE
    J Membr Biol; 1988 May; 102(2):97-104. PubMed ID: 3418688
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cd2+ activation of L-threonine dehydrogenase from Escherichia coli K-12.
    Craig PA; Dekker EE
    Biochim Biophys Acta; 1988 Nov; 957(2):222-9. PubMed ID: 3056527
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Interaction of cadmium with brush border membrane vesicles from the rat small intestine.
    Bevan C; Foulkes EC
    Toxicology; 1989 Mar; 54(3):297-309. PubMed ID: 2495582
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cadmium-resistance plasmid in Staphylococcus lugdunensis.
    Poitevin-Later F; Vandenesch F; Dyke K; Fleurette J; Etienne J
    FEMS Microbiol Lett; 1992 Nov; 78(1):59-63. PubMed ID: 1468617
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Effect of cadmium on C-14-glucose uptake by Staphylococcus aureus].
    Tynecka Z; Skwarek T
    Med Dosw Mikrobiol; 1989; 41(1):1-8. PubMed ID: 2761319
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The effects of Al3+, Cd2+ and Mn2+ on human erythrocyte choline transport.
    King RG; Sharp JA; Boura AL
    Biochem Pharmacol; 1983 Dec; 32(23):3611-7. PubMed ID: 6140015
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Kinetic study of the antiport mechanism of an Escherichia coli zinc transporter, ZitB.
    Chao Y; Fu D
    J Biol Chem; 2004 Mar; 279(13):12043-50. PubMed ID: 14715669
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of Cd2+, Mn2+, and Al3+ on rat brain synaptosomal uptake of noradrenaline and serotonin.
    Lai JC; Lim L; Davison AN
    J Inorg Biochem; 1982 Nov; 17(3):215-25. PubMed ID: 7175524
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of Cd2+ on phosphate exchange in Staphylococcus aureus.
    Tynecka Z; Malm A
    Acta Biochim Pol; 1992; 39(1):39-43. PubMed ID: 1441833
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.