These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 7068592)

  • 41. Dioxygen transfer during vitamin K dependent carboxylase catalysis.
    Kuliopulos A; Hubbard BR; Lam Z; Koski IJ; Furie B; Furie BC; Walsh CT
    Biochemistry; 1992 Aug; 31(33):7722-8. PubMed ID: 1510957
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Characteristics of vitamin K-dependent carboxylating systems from human liver and placenta.
    Soute BA; de Metz M; Vermeer C
    FEBS Lett; 1982 Sep; 146(2):365-8. PubMed ID: 7140983
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Mutagenesis of vitamin K-dependent carboxylase demonstrates a carboxyl terminus-mediated interaction with vitamin K hydroquinone.
    Roth DA; Whirl ML; Velazquez-Estades LJ; Walsh CT; Furie B; Furie BC
    J Biol Chem; 1995 Mar; 270(10):5305-11. PubMed ID: 7890642
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Disulfide-dependent protein folding is linked to operation of the vitamin K cycle in the endoplasmic reticulum. A protein disulfide isomerase-VKORC1 redox enzyme complex appears to be responsible for vitamin K1 2,3-epoxide reduction.
    Wajih N; Hutson SM; Wallin R
    J Biol Chem; 2007 Jan; 282(4):2626-35. PubMed ID: 17124179
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Studies of the vitamin K-dependent carboxylase and vitamin K epoxide reductase in rat liver.
    Suttie JW; Preusch PC
    Haemostasis; 1986; 16(3-4):193-215. PubMed ID: 3530899
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The function and metabolism of vitamin K.
    Olson RE
    Annu Rev Nutr; 1984; 4():281-337. PubMed ID: 6380538
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Profactor IX propeptide and glutamate substrate binding sites on the vitamin K-dependent carboxylase identified by site-directed mutagenesis.
    Sugiura I; Furie B; Walsh CT; Furie BC
    J Biol Chem; 1996 Jul; 271(30):17837-44. PubMed ID: 8663364
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The metabolic role of vitamin K.
    Suttie JW
    Fed Proc; 1980 Aug; 39(10):2730-5. PubMed ID: 7409197
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Vitamin K-dependent oxygenase/carboxylase; differential inactivation by sulfhydryl reagents.
    Canfield LM
    Biochem Biophys Res Commun; 1987 Oct; 148(1):184-91. PubMed ID: 3675572
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Tissue distribution of K-vitamers under different nutritional regimens in the rat.
    Ronden JE; Thijssen HH; Vermeer C
    Biochim Biophys Acta; 1998 Jan; 1379(1):16-22. PubMed ID: 9468327
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Rapid, high performance method for the determination of vitamin K(1), menaquinone-4 and vitamin K(1) 2,3-epoxide in human serum and plasma using liquid chromatography-hybrid quadrupole linear ion trap mass spectrometry.
    Gentili A; Cafolla A; Gasperi T; Bellante S; Caretti F; Curini R; Fernández VP
    J Chromatogr A; 2014 Apr; 1338():102-10. PubMed ID: 24630057
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Physiological importance of extra-hepatic vitamin K-dependent carboxylation reactions.
    Vermeer C; Knapen MH; Jie KS; Grobbee DE
    Ann N Y Acad Sci; 1992 Sep; 669():21-31; discussion 31-3. PubMed ID: 1444027
    [No Abstract]   [Full Text] [Related]  

  • 53. Detection and measurement of vitamins K1 and K2 in human cortical and trabecular bone.
    Hodges SJ; Bejui J; Leclercq M; Delmas PD
    J Bone Miner Res; 1993 Aug; 8(8):1005-8. PubMed ID: 8213250
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Inhibition of vitamin K-dependent carboxylase by metal ions and metal complexes: a reassessment.
    Kanabus-Kaminska JM; Girardot JM
    Arch Biochem Biophys; 1984 Feb; 228(2):646-52. PubMed ID: 6696452
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Comparative uptake, metabolism, and utilization of menaquinone-4 and phylloquinone in human cultured cell lines.
    Suhara Y; Murakami A; Nakagawa K; Mizuguchi Y; Okano T
    Bioorg Med Chem; 2006 Oct; 14(19):6601-7. PubMed ID: 16798001
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Relationship between vitamin K-dependent carboxylation and vitamin K epoxidation.
    Suttie JW; Larson AE; Canfield LM; Carlisle TL
    Fed Proc; 1978 Oct; 37(12):2605-9. PubMed ID: 700169
    [TBL] [Abstract][Full Text] [Related]  

  • 57. VKOR paralog VKORC1L1 supports vitamin K-dependent protein carboxylation in vivo.
    Lacombe J; Rishavy MA; Berkner KL; Ferron M
    JCI Insight; 2018 Jan; 3(1):. PubMed ID: 29321368
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Vitamin K-dependent carboxylation. A synthetic peptide based upon the gamma-carboxylation recognition site sequence of the prothrombin propeptide is an active substrate for the carboxylase in vitro.
    Ulrich MM; Furie B; Jacobs MR; Vermeer C; Furie BC
    J Biol Chem; 1988 Jul; 263(20):9697-702. PubMed ID: 3133366
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Molecular basis of vitamin K-dependent gamma-carboxylation.
    Furie B; Furie BC
    Blood; 1990 May; 75(9):1753-62. PubMed ID: 2184900
    [No Abstract]   [Full Text] [Related]  

  • 60. Warfarin and the vitamin K-dependent gamma-carboxylation system.
    Wallin R; Hutson SM
    Trends Mol Med; 2004 Jul; 10(7):299-302. PubMed ID: 15242675
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.