These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 7068644)
1. Cationic amino acid transport into cultured animal cells. II. Transport system barely perceptible in ordinary hepatocytes, but active in hepatoma cell lines. White MF; Christensen HN J Biol Chem; 1982 Apr; 257(8):4450-7. PubMed ID: 7068644 [TBL] [Abstract][Full Text] [Related]
2. Cationic amino acid transport into cultured animal cells. I. Influx into cultured human fibroblasts. White MF; Gazzola GC; Christensen HN J Biol Chem; 1982 Apr; 257(8):4443-9. PubMed ID: 7040384 [TBL] [Abstract][Full Text] [Related]
3. The two-way flux of cationic amino acids across the plasma membrane of mammalian cells is largely explained by a single transport system. White MF; Christensen HN J Biol Chem; 1982 Sep; 257(17):10069-80. PubMed ID: 7107597 [TBL] [Abstract][Full Text] [Related]
4. Simultaneous regulation of amino acid influx and efflux by system A in the hepatoma cell HTC. Ouabain simulates the starvation-induced derepression of system A amino acid transport. White MF; Christensen HN J Biol Chem; 1983 Jul; 258(13):8028-38. PubMed ID: 6863276 [TBL] [Abstract][Full Text] [Related]
5. Cis-inhibition and trans-stimulation of cationic amino acid transport in the perfused rat pancreas. Sweiry JH; Muñoz M; Mann GE Am J Physiol; 1991 Sep; 261(3 Pt 1):C506-14. PubMed ID: 1909494 [TBL] [Abstract][Full Text] [Related]
6. Lysinuric protein intolerance mutation is expressed in the plasma membrane of cultured skin fibroblasts. Smith DW; Scriver CR; Tenenhouse HS; Simell O Proc Natl Acad Sci U S A; 1987 Nov; 84(21):7711-5. PubMed ID: 3478720 [TBL] [Abstract][Full Text] [Related]
7. Surprising differences in substrate selectivity and other properties of systems A and ASC between rat hepatocytes and the hepatoma cell line HTC. Handlogten ME; Garcia-Cañero R; Lancaster KT; Christensen HN J Biol Chem; 1981 Aug; 256(15):7905-9. PubMed ID: 6790528 [TBL] [Abstract][Full Text] [Related]
8. Important differences in cationic amino acid transport by lysosomal system c and system y+ of the human fibroblast. Pisoni RL; Thoene JG; Lemons RM; Christensen HN J Biol Chem; 1987 Nov; 262(31):15011-8. PubMed ID: 3499437 [TBL] [Abstract][Full Text] [Related]
9. Inactivation of amino acid transport in rat hepatocytes and hepatoma cells by PCMBS. Chiles TC; Dudeck-Collart KL; Kilberg MS Am J Physiol; 1988 Sep; 255(3 Pt 1):C340-5. PubMed ID: 2844094 [TBL] [Abstract][Full Text] [Related]
10. Comparison of system N in fetal hepatocytes and in related cell lines. Vadgama JV; Christensen HN J Biol Chem; 1983 May; 258(10):6422-9. PubMed ID: 6304040 [TBL] [Abstract][Full Text] [Related]
11. Hepatic transport system interconverted by protonation from service for neutral to service for anionic amino acids. Makowske M; Christensen HN J Biol Chem; 1982 Dec; 257(24):14635-8. PubMed ID: 7174659 [TBL] [Abstract][Full Text] [Related]
12. Arginine transport through system y(+)L in cultured human fibroblasts: normal phenotype of cells from LPI subjects. Dall'Asta V; Bussolati O; Sala R; Rotoli BM; Sebastio G; Sperandeo MP; Andria G; Gazzola GC Am J Physiol Cell Physiol; 2000 Dec; 279(6):C1829-37. PubMed ID: 11078698 [TBL] [Abstract][Full Text] [Related]
13. Repression, derepression, transinhibition, and trans-stimulation of amino acid transport in rat hepatocytes and four rat hepatoma cell lines in culture. Kelley DS; Potter VR J Biol Chem; 1979 Jul; 254(14):6691-7. PubMed ID: 447744 [No Abstract] [Full Text] [Related]
14. Incomplete correspondence between repressive and substrate action by amino acids on transport systems A and N in monolayered rat hepatocytes. Handlogten ME; Kilberg MS; Christensen HN J Biol Chem; 1982 Jan; 257(1):345-8. PubMed ID: 7053375 [TBL] [Abstract][Full Text] [Related]
15. Contrasts in transport systems for anionic amino acids in hepatocytes and a hepatoma cell line HTC. Makowske M; Christensen HN J Biol Chem; 1982 May; 257(10):5663-70. PubMed ID: 7068612 [No Abstract] [Full Text] [Related]
16. The importance of cationic amino acid transporter expression in human skin. Schnorr O; Suschek CV; Kolb-Bachofen V J Invest Dermatol; 2003 Jun; 120(6):1016-22. PubMed ID: 12787129 [TBL] [Abstract][Full Text] [Related]
17. The transport of cationic amino acids in human airway cells: expression of system y+L activity and transepithelial delivery of NOS inhibitors. Rotoli BM; Bussolati O; Sala R; Gazzola GC; Dall'Asta V FASEB J; 2005 May; 19(7):810-2. PubMed ID: 15746185 [TBL] [Abstract][Full Text] [Related]
18. Adaptive regulation of the cationic amino acid transporter-1 (Cat-1) in Fao cells. Hyatt SL; Aulak KS; Malandro M; Kilberg MS; Hatzoglou M J Biol Chem; 1997 Aug; 272(32):19951-7. PubMed ID: 9242663 [TBL] [Abstract][Full Text] [Related]
19. Rat hepatoma cells express novel transport systems for glutamine and glutamate in addition to those present in normal rat hepatocytes. McGivan JD Biochem J; 1998 Feb; 330 ( Pt 1)(Pt 1):255-60. PubMed ID: 9461518 [TBL] [Abstract][Full Text] [Related]
20. Neutral amino acid transport. Characterization of the A and L systems in isolated rat hepatocytes. Le Cam A; Freychet P J Biol Chem; 1977 Jan; 252(1):148-56. PubMed ID: 833114 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]