BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 7068772)

  • 21. Membrane potential, chloride exchange, and chloride conductance in Ehrlich mouse ascites tumour cells.
    Hoffmann EK; Simonsen LO; Sjøholm C
    J Physiol; 1979 Nov; 296():61-84. PubMed ID: 529133
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Energy supply of the mitotic cell cycle and the Na+/H+-antiport in ascites tumors.
    Kazmin SD; Danko IM
    Neoplasma; 1989; 36(2):139-47. PubMed ID: 2541348
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The effects of alterations in the external sodium concentration on human leucocyte sodium and potassium transport in vitro.
    Hilton PJ; Johnson VE; Jones RB; Patrick J
    J Cell Physiol; 1981 Nov; 109(2):323-32. PubMed ID: 7298732
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Molecular and functional characterization of an Na+-independent choline transporter in rat astrocytes.
    Inazu M; Takeda H; Matsumiya T
    J Neurochem; 2005 Sep; 94(5):1427-37. PubMed ID: 16000150
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Adaptation to phosphate deprivation in osteoblast-like cells.
    Ha R; Steenbergen DK; Kempson SA
    Cell Biochem Funct; 1993 Jun; 11(2):119-24. PubMed ID: 8324880
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Modifying effect of ionizing radiation on the transmembrane transport of sodium ions in Ehrlich carcinoma tumor cells].
    Mtskhvetadze AV; Chilingarov AO; Tushishvili DI
    Radiobiologiia; 1987; 27(1):81-4. PubMed ID: 3029802
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Amiloride-sensitive sodium transport in lamprey red blood cells: evidence for two distinct transport pathways.
    Gusev GP; Ivanova TI
    Gen Physiol Biophys; 2004 Dec; 23(4):443-56. PubMed ID: 15815079
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structure-function relations of the first and fourth extracellular linkers of the type IIa Na+/Pi cotransporter: II. Substrate interaction and voltage dependency of two functionally important sites.
    Ehnes C; Forster IC; Bacconi A; Kohler K; Biber J; Murer H
    J Gen Physiol; 2004 Nov; 124(5):489-503. PubMed ID: 15504899
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Net uptake of orthophosphate in Ehrlich ascites tumor cells in the presence of purine riboside may be rate limiting for the expansion of the pool of ribonucleotides.
    Marcussen M; Overgaard-Hansen K; Klenow H
    Biochim Biophys Acta; 1994 Aug; 1194(1):197-202. PubMed ID: 8075136
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Lipopolysaccharides stimulate Na-dependent transport in alveolar cells and protect against oxidant injury.
    Azarian R; Clerici C; Couette S; Friedlander G; Amiel C
    J Cell Physiol; 1995 May; 163(2):328-38. PubMed ID: 7706377
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Phosphate transport and its relationship to cation movements in Ehrlich Lettré ascites tumor cells.
    Mazumder A; Wenner CE
    Arch Biochem Biophys; 1977 Mar; 179(2):409-14. PubMed ID: 15515
    [No Abstract]   [Full Text] [Related]  

  • 32. Evidence for sodium-dependent hypoxanthine uptake in isolated guinea pig ventricular myocytes: stimulation by extracellular Ni2+.
    Haddock PS
    Cardiovasc Res; 1995 Jul; 30(1):130-7. PubMed ID: 7553715
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Kinetics of myo-inositol transport in rat ocular lens.
    Diecke FP; Beyer-Mears A; Mistry K
    J Cell Physiol; 1995 Feb; 162(2):290-7. PubMed ID: 7822436
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of adenosine triphosphate on phosphate uptake in renal proximal tubule cells: involvement of PKC and p38 MAPK.
    Lee YJ; Park SH; Jeung TO; Kim KW; Lee JH; Han HJ
    J Cell Physiol; 2005 Oct; 205(1):68-76. PubMed ID: 15880445
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Odontoblast phosphate and calcium transport in dentinogenesis.
    Lundquist P
    Swed Dent J Suppl; 2002; (154):1-52. PubMed ID: 12240523
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Glutathione transport in human retinal pigment epithelial (HRPE) cells: apical localization of sodium-dependent gsh transport.
    Kannan R; Tang D; Hu J; Bok D
    Exp Eye Res; 2001 Jun; 72(6):661-6. PubMed ID: 11384154
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Physiological evidence for a sodium-dependent high-affinity phosphate and nitrate transport at the plasma membrane of leaf and root cells of Zostera marina L.
    Rubio L; Linares-Rueda A; García-Sánchez MJ; Fernández JA
    J Exp Bot; 2005 Feb; 56(412):613-22. PubMed ID: 15611145
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Effects of intracellular Na+/K+ ratio on histone gene expression in ascitic cells of leukemia P-388 and Ehrlich cancer].
    Smirnova NV; Kolosov EV; Kaz'min SD
    Eksp Onkol; 1990; 12(3):34-7. PubMed ID: 2344821
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Molecular and functional characterization of choline transporter in rat renal tubule epithelial NRK-52E cells.
    Yabuki M; Inazu M; Yamada T; Tajima H; Matsumiya T
    Arch Biochem Biophys; 2009 May; 485(1):88-96. PubMed ID: 19236841
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Lanthanum-induced alterations of cellular electrolytes in Ehrlich ascites tumor cells: a new view.
    Levinson C; Smith TC; Mikiten TM
    J Cell Physiol; 1972 Aug; 80(1):149-54. PubMed ID: 5071878
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.