These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 7069790)

  • 1. The electrophysiology of rabbit descending colon. II. Current-voltage relations of the apical membrane, the basolateral membrane, and the parallel pathways.
    Thompson SM; Suzuki Y; Schultz SG
    J Membr Biol; 1982; 66(1):55-61. PubMed ID: 7069790
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Apical membrane potassium and chloride permeabilities in surface cells of rabbit descending colon epithelium.
    Wills NK
    J Physiol; 1985 Jan; 358():433-45. PubMed ID: 2580086
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Active and passive properties of rabbit descending colon: a microelectrode and nystatin study.
    Wills NK; Lewis SA; Eaton DC
    J Membr Biol; 1979 Mar; 45(1-2):81-108. PubMed ID: 448728
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Active sodium transport and the electrophysiology of rabbit colon.
    Schultz SG; Frizzell RA; Nellans HN
    J Membr Biol; 1977 May; 33(3-4):351-84. PubMed ID: 864694
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ion transport and electrophysiology of the early proximal colon of rabbit.
    Clauss W; Biehler KH; Schäfer H; Wills NK
    Pflugers Arch; 1987 May; 408(6):592-9. PubMed ID: 3601644
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transport-dependent alterations of membrane properties of mammalian colon measured using impedance analysis.
    Wills NK; Clausen C
    J Membr Biol; 1987; 95(1):21-35. PubMed ID: 3560207
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The electrophysiology of rabbit descending colon. I. Instantaneous transepithelial current-voltage relations and the current-voltage relations of the Na-entry mechanism.
    Thompson SM; Suzuki Y; Schultz SG
    J Membr Biol; 1982; 66(1):41-54. PubMed ID: 7069789
    [No Abstract]   [Full Text] [Related]  

  • 8. Characterization of an apical sodium conductance in rabbit cecum.
    Sellin JH; Hall A; Cragoe EJ; Dubinsky WP
    Am J Physiol; 1993 Jan; 264(1 Pt 1):G13-21. PubMed ID: 8381595
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Short-term effects of uninephrectomy on electrical properties of the cortical collecting duct from rabbit remnant kidneys.
    Muto S; Ebata S; Asano Y
    J Clin Invest; 1994 Jan; 93(1):286-96. PubMed ID: 8282799
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrophysiology of Necturus urinary bladder: II. Time-dependent current-voltage relations of the basolateral membranes.
    Schultz SG; Thompson SM; Hudson R; Thomas SR; Suzuki Y
    J Membr Biol; 1984; 79(3):257-69. PubMed ID: 6471095
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microelectrode studies of Necturus antral mucosa. II. Equivalent circuit analysis.
    Ashley SW; Soybel DI; De L; Cheung LY
    Am J Physiol; 1985 May; 248(5 Pt 1):G574-9. PubMed ID: 3993785
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrophysiology of the human colon: evidence of segmental heterogeneity.
    Sandle GI; Wills NK; Alles W; Binder HJ
    Gut; 1986 Sep; 27(9):999-1005. PubMed ID: 3758827
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Time-dependent effects of aldosterone on sodium transport and cell membrane resistances in rabbit distal colon.
    Hoffmann B; Clauss W
    Pflugers Arch; 1989 Nov; 415(2):156-64. PubMed ID: 2594472
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrophysiological characteristics of the Necturus proximal duodenal mucosa: effects of ion substitutions.
    Bridén S
    Acta Physiol Scand; 1989 Dec; 137(4):469-79. PubMed ID: 2603748
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrophysiological characterization of rabbit distal convoluted tubule cell.
    Yoshitomi K; Shimizu T; Taniguchi J; Imai M
    Pflugers Arch; 1989 Aug; 414(4):457-63. PubMed ID: 2477793
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Amiloride-sensitive Na+ transport across cultured renal (A6) epithelium: evidence for large currents and high Na:K selectivity.
    Wills NK; Millinoff LP
    Pflugers Arch; 1990 Jul; 416(5):481-92. PubMed ID: 2172913
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new class of inhibitors of cAMP-mediated Cl- secretion in rabbit colon, acting by the reduction of cAMP-activated K+ conductance.
    Lohrmann E; Burhoff I; Nitschke RB; Lang HJ; Mania D; Englert HC; Hropot M; Warth R; Rohm W; Bleich M
    Pflugers Arch; 1995 Feb; 429(4):517-30. PubMed ID: 7617442
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conductive properties of papillary surface epithelium.
    Reeves WB
    Am J Physiol; 1994 Feb; 266(2 Pt 2):F259-65. PubMed ID: 8141326
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrical properties of the rabbit cortical collecting duct from obstructed and contralateral kidneys after unilateral ureteral obstruction.
    Muto S; Miyata Y; Asano Y
    J Clin Invest; 1993 Aug; 92(2):571-81. PubMed ID: 8349797
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intracellular microelectrode characterization of the rabbit cortical collecting duct.
    Koeppen BM; Biagi BA; Giebisch GH
    Am J Physiol; 1983 Jan; 244(1):F35-47. PubMed ID: 6295184
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.