These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 707065)

  • 1. A study of the vibration of the basilar membrane in human temporal bone preparations by the use of the Mössbauer effect.
    Gundersen T; Skarstein O; Sikkeland T
    Acta Otolaryngol; 1978; 86(3-4):225-32. PubMed ID: 707065
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Middle-ear response in the chinchilla and its relationship to mechanics at the base of the cochlea.
    Ruggero MA; Rich NC; Robles L; Shivapuja BG
    J Acoust Soc Am; 1990 Apr; 87(4):1612-29. PubMed ID: 2341666
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of increased inner ear pressure on middle ear mechanics.
    Murakami S; Gyo K; Goode RL
    Otolaryngol Head Neck Surg; 1998 May; 118(5):703-8. PubMed ID: 9591878
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sound pressure gain produced by the human middle ear.
    Kurokawa H; Goode RL
    Otolaryngol Head Neck Surg; 1995 Oct; 113(4):349-55. PubMed ID: 7567003
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A method to measure sound transmission via the malleus-incus complex.
    Dobrev I; Ihrle S; Röösli C; Gerig R; Eiber A; Huber AM; Sim JH
    Hear Res; 2016 Oct; 340():89-98. PubMed ID: 26626362
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measurement of basilar membrane motion in the guinea pig using the Mössbauer technique.
    Sellick PM; Patuzzi R; Johnstone BM
    J Acoust Soc Am; 1982 Jul; 72(1):131-41. PubMed ID: 7108035
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Basilar membrane tuning in the cat cochlea.
    Khanna SM; Leonard DG
    Science; 1982 Jan; 215(4530):305-6. PubMed ID: 7053580
    [No Abstract]   [Full Text] [Related]  

  • 8. In vivo measurement of basilar membrane vibration in the unopened chinchilla cochlea using high frequency ultrasound.
    Landry TG; Bance ML; Leadbetter J; Adamson RB; Brown JA
    J Acoust Soc Am; 2017 Jun; 141(6):4610. PubMed ID: 28679279
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Noise-induced hearing losses. Can they be explained by basilar membrane movement?
    Kringlebotn M; Gundersen T; Krokstad A; Skarstein O
    Acta Otolaryngol Suppl; 1979; 360():98-101. PubMed ID: 287366
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stiffness gradient along the basilar membrane as a basis for spatial frequency analysis within the cochlea.
    Ehret G
    J Acoust Soc Am; 1978 Dec; 64(6):1723-6. PubMed ID: 739099
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The frequency response and other properties of single fibres in the guinea-pig cochlear nerve.
    Evans EF
    J Physiol; 1972 Oct; 226(1):263-87. PubMed ID: 5083170
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanical filtering of sound in the inner ear.
    Brown AM; Gaskill SA; Williams DM
    Proc Biol Sci; 1992 Oct; 250(1327):29-34. PubMed ID: 1361059
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Basilar-membrane motion in the alligator lizard: its relation to tonotopic organization and frequency selectivity.
    Peake WT; Ling A
    J Acoust Soc Am; 1980 May; 67(5):1736-45. PubMed ID: 7372928
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reticular lamina and basilar membrane vibrations in living mouse cochleae.
    Ren T; He W; Kemp D
    Proc Natl Acad Sci U S A; 2016 Aug; 113(35):9910-5. PubMed ID: 27516544
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transient response of the basilar membrane measured in squirrel monkeys using the Mössbauer effect.
    Robles L; Rhode WS; Geisler CD
    J Acoust Soc Am; 1976 Apr; 59(4):926-39. PubMed ID: 816840
    [No Abstract]   [Full Text] [Related]  

  • 16. Measurement of basilar membrane vibrations and evaluation of the cochlear condition.
    Khanna SM; Leonard DG
    Hear Res; 1986; 23(1):37-53. PubMed ID: 3733551
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of static force on round window stimulation with the direct acoustic cochlea stimulator.
    Maier H; Salcher R; Schwab B; Lenarz T
    Hear Res; 2013 Jul; 301():115-24. PubMed ID: 23276731
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of the spiral ligament in cochlear mechanics.
    Voldrich L; Ulehlová L
    Acta Otolaryngol; 1982; 93(1-6):169-73. PubMed ID: 7064704
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fast reverse propagation of sound in the living cochlea.
    He W; Fridberger A; Porsov E; Ren T
    Biophys J; 2010 Jun; 98(11):2497-505. PubMed ID: 20513393
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative validation of cochlear models using the Liouville-Green approximation.
    Viergever MA; Diependaal RJ
    Hear Res; 1986; 21(1):1-15. PubMed ID: 3957793
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.