These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 7070956)

  • 1. Capillary resistance to flow of hardened (diamide treated)red blood cells (RBC).
    Driessen GK; Scheidt-Bleichert H; Sobota A; Inhoffen W; Heidtmann H; Haest CW; Kamp D; Schmid-Schönbein H
    Pflugers Arch; 1982 Jan; 392(3):261-7. PubMed ID: 7070956
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flow behaviour of rigid red blood cells in the microcirculation.
    Driessen GK; Fischer TM; Haest CW; Inhoffen W; Schmid-Schönbein H
    Int J Microcirc Clin Exp; 1984; 3(2):197-210. PubMed ID: 6490327
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of reduced red cell "deformability" on flow velocity in capillaries of rat mesentery.
    Driessen GK; Haest CW; Heidtmann H; Kamp D; Schmid-Schönbein H
    Pflugers Arch; 1980 Oct; 388(1):75-8. PubMed ID: 7192392
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comparison of micro- and macrocirculation of the isolated rat mesentery preparation.
    Driessen G; Scheidt H; Heidtmann H; Inhoffen W; Schmid-Schönbein H
    Microcirc Endothelium Lymphatics; 1985; 2(5):551-74. PubMed ID: 3836354
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vascular resistance and transit time of sickle red blood cells.
    Vargas FF; Blackshear GL
    Blood Cells; 1982; 8(1):139-45. PubMed ID: 7115971
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flow dynamics of erythrocytes in microvessels of isolated rabbit mesentery: cell-free layer and flow resistance.
    Tateishi N; Suzuki Y; Soutani M; Maeda N
    J Biomech; 1994 Sep; 27(9):1119-25. PubMed ID: 7929461
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Early effects of tobacco smoke exposure on vascular dynamics in the microcirculation.
    Richardson D; Coates F; Morton R
    J Appl Physiol; 1975 Jul; 39(1):119-23. PubMed ID: 1150578
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [A quantitative observation of erythrocyte flow dynamics in microvessels of isolated rabbit mesentery].
    Soutani M
    Nihon Seirigaku Zasshi; 1994; 56(6):181-95. PubMed ID: 8078034
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of hemodilution and hemoconcentration on red cell flow velocity in the capillaries of the rat mesentery.
    Driessen GK; Heidtmann H; Schmid-Schönbein H
    Pflugers Arch; 1979 May; 380(1):1-6. PubMed ID: 572033
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The isolated and perfused mesentery: first results obtained with a new method for the study of microvascular hemodynamics.
    Gaehtgens PA; Uekermann U
    Z Gesamte Exp Med Einschl Exp Chir; 1971; 155(4):325-39. PubMed ID: 5096325
    [No Abstract]   [Full Text] [Related]  

  • 11. Deformation of erythrocytes in microvessels and glass capillaries: effects of erythrocyte deformability.
    Suzuki Y; Tateishi N; Soutani M; Maeda N
    Microcirculation; 1996 Mar; 3(1):49-57. PubMed ID: 8846271
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of hypoxia on erythrocyte deformability in different species.
    Hakim TS; Macek AS
    Biorheology; 1988; 25(6):857-68. PubMed ID: 3151444
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Generalization of the Fahraeus principle for microvessel networks.
    Pries AR; Ley K; Gaehtgens P
    Am J Physiol; 1986 Dec; 251(6 Pt 2):H1324-32. PubMed ID: 3789184
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of normal human erythrocytes on blood rheology in microcirculation.
    Hirata C; Kobayashi H; Mizuno N; Kutsuna H; Ishina K; Ishii M
    Osaka City Med J; 2007 Dec; 53(2):73-85. PubMed ID: 18432063
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of surface electric charge in red blood cell interactions.
    Jan KM; Chien S
    J Gen Physiol; 1973 May; 61(5):638-54. PubMed ID: 4705641
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flow behavior of erythrocytes in microvessels and glass capillaries: effects of erythrocyte deformation and erythrocyte aggregation.
    Suzuki Y; Tateishi N; Soutani M; Maeda N
    Int J Microcirc Clin Exp; 1996; 16(4):187-94. PubMed ID: 8923151
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The use of fluorescent labeled erythrocytes for intravital investigation of flow and local hematocrit in glomerular capillaries in the rat.
    Zimmerhackl B; Parekh N; Brinkhus H; Steinhausen M
    Int J Microcirc Clin Exp; 1983; 2(2):119-29. PubMed ID: 6678842
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comparative study: perfusion of the micro- and macrocirculation as a function of the hematocrit value.
    Driessen G; Scheidt H; Inhoffen W; Sobota A; Malotta H; Schmid-Schönbein H
    Microvasc Res; 1988 Jan; 35(1):73-85. PubMed ID: 3343940
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vivo measurements of "apparent viscosity" and microvessel hematocrit in the mesentery of the cat.
    Lipowsky HH; Usami S; Chien S
    Microvasc Res; 1980 May; 19(3):297-319. PubMed ID: 7382851
    [No Abstract]   [Full Text] [Related]  

  • 20. Quantification of erythrocyte flow in the choroid of the albino rat.
    Braun RD; Dewhirst MW; Hatchell DL
    Am J Physiol; 1997 Mar; 272(3 Pt 2):H1444-53. PubMed ID: 9087623
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.